scholarly journals Effects of Partial Replacment of Dietary Forage Using Kelp Powder (Thallus laminariae) on Ruminal Fermentation and Lactation Performances of Dairy Cows

Animals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 852 ◽  
Author(s):  
Fuguang Xue ◽  
Fuyu Sun ◽  
Linshu Jiang ◽  
Dengke Hua ◽  
Yue Wang ◽  
...  

Background: Kelp powder, which was rich in novel oligosaccharides and iodine might be utilized by the rumen microbiome, promoted the ruminal fermentation and finally enhanced the lactation performance of dairy cows. Therefore, the purpose of this study was to investigate the effects of kelp powder partially replacing dietary forage on rumen fermentation and lactation performance of dairy cows. (2) Methods: In the present study, 20 Chinese Holstein dairy cows were randomly divided into two treatments, a control diet (CON) and a kelp powder replacing diet (Kelp) for a 35-d long trial. Dry matter intake (DMI), milk production, milk quality, ruminal fermentable parameters, and rumen microbiota were measured to investigate the effects of kelp powder feeding on dairy cows. (3) Results: On the lactation performance, kelp significantly increased milk iodine content and effectively enhanced milk production and milk fat content. On the fermentable aspects, kelp significantly raised TVFA while reducing the ammonia-N content. On the rumen microbial aspect, kelp feeding significantly promoted the proliferation of Firmicutes and Proteobacteria while suppressing Bacteroidetes. (4) Conclusion: kelp powder as an ingredient of feedstuff might promote the rumen fermentation ability and effectively increase milk fat and iodine content, and consequently improve the milk nutritional value.

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 919
Author(s):  
Verónica M. Merino ◽  
Lorena Leichtle ◽  
Oscar A. Balocchi ◽  
Francisco Lanuza ◽  
Julián Parga ◽  
...  

The aim was to determine the effect of the herbage allowance (HA) and supplement type (ST) on dry matter intake (DMI), milk production and composition, grazing behavior, rumen function, and blood metabolites of grazing dairy cows in the spring season. Experiment I: 64 Holstein Friesian dairy cows were distributed in a factorial design that tested two levels of daily HA (20 and 30 kg of dry matter (DM) per cow) and two ST (high moisture maize (HMM) and cracked wheat (CW)) distributed in two daily rations (3.5 kg DM/cow/day). Experiment II: four mid-lactation rumen cannulated cows, supplemented with either HMM or CW and managed with the two HAs, were distributed in a Latin square design of 4 × 4, for four 14-d periods to assess ruminal fermentation parameters. HA had no effect on milk production (averaging 23.6 kg/day) or milk fat and protein production (823 g/day and 800 g/day, respectively). Cows supplemented with CW had greater protein concentration (+1.2 g/kg). Herbage DMI averaged 14.17 kg DM/cow.day and total DMI averaged 17.67 kg DM/cow.day and did not differ between treatments. Grazing behavior activities (grazing, rumination, and idling times) and body condition score (BCS) were not affected by HA or ST. Milk and plasma urea concentration increased under the high HA (+0.68 mmol/L and +0.90 mmol/L, respectively). Cows supplemented with HMM had lower milk and plasma urea concentrations (0.72 mmol/L and 0.76 mmol/L less, respectively) and tended (p = 0.054) to have higher plasma β-hydroxybutyrate. Ruminal parameters did not differ between treatments.


Author(s):  
Frank O'Mara ◽  
J. J. Murphy ◽  
Myles Rath

Rumen fermentation patterns are influenced by the quantity of starch in the diet and by the extent of digestion of the starch in the rumen. The extent of digestion of starch in the rumen can be influenced both by the source of starch (e.g. maize starch less digested than wheat starch) and by the method of processing the grain (starch from ground grain more digestible in the rumen than starch from NaOH treated grain). The objectives of this experiment were to compare the performance of dairy cows (a) fed different sources of starch (wheat and maize) and (b) fed wheat either ground or treated with NaOH, compared to a low starch control diet.


1997 ◽  
Vol 64 (2) ◽  
pp. 181-195 ◽  
Author(s):  
FRANCIS ENJALBERT ◽  
MARIE CLAUDE NICOT ◽  
CORINE BAYOURTHE ◽  
MICHELE VERNAY ◽  
RAYMOND MONCOULON

Dairy cows fitted with ruminal, duodenal and ileal cannulas were utilized to investigate the effects of feeding with Ca soaps (CaS) of palm fatty acids (FA) and rapeseed FA. Diets compared were control diet based on maize silage and concentrate, and two diets with 40 g CaS of palm oil FA or rapeseed oil FA/kg diet, replacing part of the concentrates of the control diet. Total digestibilities of dry matter, fibre and fat, and ruminal fermentation were not significantly altered by giving CaS; the extent of ruminal biohydrogenation of total unsaturated C18 FA was significantly reduced by both CaS diets. Apparent intestinal digestibility of FA was not different among diets, although the amount of FA absorbed with the CaS diets was twice that with the control diet. No difference among diets was observed for milk production, or fat and protein contents. Giving CaS diets decreased the proportions of 4[ratio ]0 to 14[ratio ]0 FA in milk fat, and increased cis-18[ratio ]1n−9, compared with control diet. The rapeseed diet lowered the content of 16[ratio ]0, and increased the contents of 18[ratio ]0 and trans-18[ratio ]1n−7. CaS diets did not result in a marked increase of polyunsaturated FA content in milk fat. Butter from cows fed on the CaS diets contained more liquid fat at 6 and 14°C than butter from the cows fed on the control diet. Incorporating CaS, particularly those from rapeseed, in dairy cows' diets increased C18 FA in milk and improved butter spreadability.


2001 ◽  
Vol 41 (1) ◽  
pp. 1 ◽  
Author(s):  
G. P. Walker ◽  
C. R. Stockdale ◽  
W. J. Wales ◽  
P. T. Doyle ◽  
D. W. Dellow

Two grazing experiments tested the hypothesis that a cereal grain-based supplement, fed to cows that are in mid–late lactation and grazing low metabolisable energy and high neutral detergent fibre content paspalum (Paspalum dilatatum Poir.)-type pastures, will increase milk yield, but that this response will diminish with successive increments of supplement. A further objective of this research was to investigate some of the factors, such as altered rumen fermentation pattern, that might vary the point at which diminishing returns start to occur. Cows grazed irrigated perennial pasture at an allowance of either 25 (experiment 1) or 31 (experiment 3) kg of dry matter (DM) per cow per day in late summer–early autumn (mid–late lactation) and were supplemented with cereal grain-based concentrates up to 11 and 7 kg DM/cow.day in experiments 1 and 3, respectively. In experiment 1, there were 3 replicates of 6 treatments (3 cows in each treatment group) that involved the feeding of either 0, 3, 5, 7, 9 or 11 kg DM/cow.day of supplement for 50 days. Experiment 3 was conducted over 35 days. There were 2 replicates of 4 treatments (4 cows per treatment group) that involved the feeding of either 0, 3, 5 or 7 kg DM/cow.day of supplement. A further experiment (experiment 2), associated with experiment 1, examined the effects of offering cereal grain-based concentrates up to 7 kg DM/cow.day to dairy cows consuming 10 kg DM/day of herbage with a high paspalum content on aspects of rumen fermentation. Incremental responses of 40 g/kg fat-corrected milk (FCM) to increasing concentrate intake diminished with increasing concentrate intake, with the level of supplementation at which diminishing returns occurred dependent on herbage allowance and, therefore, herbage intake. At a supplement intake of 3 kg DM/cow.day, the response in FCM was 1.1 kg/kg concentrate DM in both grazing experiments. There were no further increases in milk production with additional increments of concentrates in experiment 3 where the pasture allowance was highest. In experiment 1, where concentrates were offered to a level of 11 kg DM/cow.day, and the pasture allowance was lower, diminishing returns were not as pronounced as in experiment 3 until the highest levels of concentrate intake. Substitution of supplement for herbage was a major factor in causing the diminishing returns in both experiments, but especially in experiment 3, where pasture intakes were higher. Milk fat content was significantly (P<0.05) reduced (41.8 v. 32.5 g/kg) when concentrate intake increased from 9 to 10.4 kg supplement DM/cow.day in experiment 1. It was hypothesised that this reduction in milk fat content was probably due to the effects of subclinical rumen lactic acidosis. This hypothesis was supported by the trend to lower rumen pH for longer periods as supplement intake increased as well as a more variable milk yield at the highest level of supplement intake. We conclude that responses of FCM of 1.1 kg/kg DM cereal grain-based concentrates can be achieved when they are fed twice daily up to 3 kg DM/day to dairy cows grazing restricted amounts of paspalum-type pasture in autumn. Beyond 3 kg DM/day, marginal responses diminished with increasing concentrate intake, with the level of supplementation at which diminishing returns occurred being dependent on herbage allowance and, therefore, intake.


2010 ◽  
Vol 148 (4) ◽  
pp. 487-495 ◽  
Author(s):  
C. WANG ◽  
Q. LIU ◽  
W. Z. YANG ◽  
J. WU ◽  
W. W. ZHANG ◽  
...  

SUMMARYThe objective of the present study was to evaluate the effects of betaine supplementation on rumen fermentation, lactation performance and plasma characteristics in dairy cows. Twenty multiparous Holstein dairy cows (597±11·8 kg body weight (BW), 88±4·5 days in milk (DIM) and average daily milk production of 26·3±0·5 kg/cow) were used in a replicated 4×4 Latin square experiment. The treatments were: control (without betaine), low-betaine (LB), medium-betaine (MB) and high-betaine (HB) with 0, 50, 100 and 150 g supplemental anhydrous betaine/cow/day, respectively. Betaine was hand-mixed into the top one-third of the daily ration at feeding. Experimental periods were 30 days with 15 days of adaptation and 15 days of sampling. Dry matter (DM) intake was not affected with increasing the betaine supplementation. There were linear increases in milk yield and fat-corrected milk yield (corrected to 40 g fat/kg) and a linear and quadratic increase in milk fat concentration with increasing the betaine supplementation, whereas the proportion and yield of milk protein and lactose, and feed efficiency, were not affected. Ruminal pH and ammonia N linearly decreased, whereas total volatile fatty acid (VFA) concentration linearly and quadratically increased with increasing the betaine supplementation. The ratio of acetate to propionate (A:P) linearly increased from 3·06 to 3·53 as betaine supplementation increased. Digestibility of DM linearly increased, whereas digestibilities of organic matter (OM), crude protein (CP), neutral detergent fibre (NDF) and acid detergent fibre (ADF) in the total tract were quadratically increased with increasing the betaine supplementation. Plasma concentrations of non-esterified fatty acids (NEFA) and β-hydroxybutyrate (BHBA) were lower for betaine supplementation than for control, and were linearly decreased by betaine supplementation. The results indicate that supplementation of mid-lactation dairy cow diets with betaine increased milk yield through increased feed digestion. Betaine supplementation may benefit lactation performance when methionine supply is limiting.


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 33
Author(s):  
Dannylo Sousa ◽  
Matilda Larsson ◽  
Elisabet Nadeau

Silage pulp (SP) is a byproduct from biorefinary of silage that can be used as forage source for ruminants. However, there is a lack of information regarding the complete replacement of dietary silage for SP on performance of dairy cows. The purpose of this study was to evaluate the complete substitution of dietary grass-clover silage for SP on milk production of dairy cows. Grass-clover mixture was harvested, wilted, and ensiled in bunker silos. The silage was screw pressed in a biorefinery for solid (SP) and liquid (protein-rich juice) separation. Seventy-two lactating cows were used in a completely randomized block design, receiving either the original silage- or SP-based diets. The SP-based diet had lower concentrations of water-soluble carbohydrates and crude protein but greater fibre concentration compared to the silage-based diet. Milk yield and energy corrected milk were generally greater for cows receiving the silage-based diet compared to the SP-based diet. Cows receiving the silage-based diet had a greater yields of milk protein and milk fat, and tended to have a greater yield of milk lactose than cows receiving the SP-based diet. Milk composition, body condition score and body weight were not affected by diets. The complete substitution of silage for SP reduced the lactation performance of dairy cows over time.


1995 ◽  
Vol 75 (4) ◽  
pp. 625-629 ◽  
Author(s):  
R. R. Corbett ◽  
L. A. Goonewardene ◽  
E. K. Okine

The effect of substituting peas for soybean and canola meals as a protein source in a high-producing dairy herd was studied in 66 Holstein cows, divided into two groups based on stage of lactation, parity, level of milk production and days in milk. Two 18.5% crude protein grain concentrate diets were formulated based on the nutrient analyses of the forages available. The control grain mix contained standard protein sources, principally soybean and canola meal (SBM\CM) while the test grain mix was formulated to contain approximately 25% field peas as the major source of protein. Both grain rations were formulated to the same nutrient specifications and balanced for undegradable protein. The duration of the trial was 6 mo during which grain feeding levels were adjusted monthly based on milk yield. For cows in early lactation, 4% fat-corrected milk yield was higher (P < 0.05) for cows fed pea based concentrates (31.3 kg d−1) than for cows fed SBM\CM supplement (29.7 kg d−1). Fat-corrected milk yield was not affected by source of protein in mid- and late-lactation cows. Fat-corrected milk production was not different (P > 0.05) for cows fed SBM\CM compared with cows fed the pea supplement when cows across all stages of lactation were included in the analyses. Milk fat percent was significantly higher (P < 0.05) for early- and mid-lactation cows fed the pea supplement. The results suggest that peas can be substituted for SBM\CM as a protein source for high-producing dairy cows. Key words: Dairy cow, pea, soybean and canola meal supplement, undegradable protein, milk production


Sign in / Sign up

Export Citation Format

Share Document