scholarly journals Antibiotic Resistance and Virulence Profiles of Gram-Negative Bacteria Isolated from Loggerhead Sea Turtles (Caretta caretta) of the Island of Maio, Cape Verde

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 771
Author(s):  
Matilde Fernandes ◽  
Miguel L. Grilo ◽  
Carla Carneiro ◽  
Eva Cunha ◽  
Luís Tavares ◽  
...  

Previous studies revealed high levels of antimicrobial resistance (AMR) in loggerhead sea turtles (Caretta caretta), describing this species as prime reservoir of antimicrobial-resistant bacteria. This study aimed to characterise, for the first time, the AMR and virulence profiles of Gram-negative bacteria isolated from 33 nesting loggerhead turtles of the island of Maio, Cape Verde. Cloacal, oral, and egg content swab samples (n = 99) were collected and analysed using conventional bacteriological techniques. Shewanella putrefaciens, Morganella morganii, and Vibrio alginolyticus were isolated from the samples under study. The isolates obtained from this loggerhead subpopulation (North-East Atlantic) revealed lower levels of AMR, compared with the results of studies performed in other subpopulations (e.g., Mediterranean). However, the detection of resistance to carbapenems and multiple antimicrobial resistance indices higher than 0.20, raises concern about the potential association of these animals to points of high antimicrobial exposure. Furthermore, virulence phenotypic characterisation revealed that the isolates presented complex virulence profiles, including the ability to produce biofilms. Finally, due to their pathogenic potential, and considering the evidence of illegal consumption of turtle-related products on the island of Maio, the identified bacteria may represent a significant threat to public health.

2021 ◽  
Author(s):  
Matilde Costa Fernandes ◽  
Miguel L. Grilo ◽  
Eva Cunha ◽  
Carla Carneiro ◽  
Luís Tavares ◽  
...  

Abstract Background: Several studies detected high levels of antibiotic-resistance in loggerhead sea turtles (Caretta caretta) and pointed this species as prime reservoirs of antibiotic-resistant bacteria and carriers of potentially pathogenic bacteria. This study aimed to characterize, for the first time, the Gram-negative aerobic microbiota of the Cape Verdean loggerhead subpopulation. Cloacal, oral and egg content swab samples from 33 nesting loggerheads (n = 99) of the Island of Maio were analysed regarding the presence of Gram-negative bacteria and their antibiotic resistance and virulence profiles. Results: Shewanella putrefaciens (27.78%), Morganella morganii (22.22%) and Vibrio alginolyticus (22.22%) were the most prevalent species isolated from the animals under study. A low incidence of antibiotic-resistant bacteria (26%) was detected, and no multidrug-resistant isolates were identified. Non-Enterobacteriaceae isolates presented the most complex virulence profiles, revealing the ability to produce hemolysins (100%), DNases (89%), lipases (79%), proteases (53%), lecithinases (21%), gelatinases (16%), and also biofilms (74%). Moreover, higher virulence indices were obtained for turtles with high parasite intensities compared with apparently healthy animals, and a positive correlation between antibiotic resistance and virulence was observed. Conclusions: Results suggest that this loggerhead population may be less exposed to antimicrobial compounds, probably due to the low anthropogenic impact observed in both their nesting (the Island of Maio) and foraging sites. Nevertheless, the presence of potentially pathogenic bacteria expressing virulence factors may threat both sea turtles’ and humans’ health.


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 162 ◽  
Author(s):  
Monica Francesca Blasi ◽  
Luciana Migliore ◽  
Daniela Mattei ◽  
Alice Rotini ◽  
Maria Cristina Thaller ◽  
...  

Sea turtles have been proposed as health indicators of marine habitats and carriers of antibiotic-resistant bacterial strains, for their longevity and migratory lifestyle. Up to now, a few studies evaluated the antibacterial resistant flora of Mediterranean loggerhead sea turtles (Caretta caretta) and most of them were carried out on stranded or recovered animals. In this study, the isolation and the antibiotic resistance profile of 90 Gram negative bacteria from cloacal swabs of 33 Mediterranean wild captured loggerhead sea turtles are described. Among sea turtles found in their foraging sites, 23 were in good health and 10 needed recovery for different health problems (hereafter named weak). Isolated cloacal bacteria belonged mainly to Enterobacteriaceae (59%), Shewanellaceae (31%) and Vibrionaceae families (5%). Although slight differences in the bacterial composition, healthy and weak sea turtles shared antibiotic-resistant strains. In total, 74 strains were endowed with one or multi resistance (up to five different drugs) phenotypes, mainly towards ampicillin (~70%) or sulfamethoxazole/trimethoprim (more than 30%). Hence, our results confirmed the presence of antibiotic-resistant strains also in healthy marine animals and the role of the loggerhead sea turtles in spreading antibiotic-resistant bacteria.


2020 ◽  
Vol 8 (5) ◽  
pp. 639 ◽  
Author(s):  
Alexis Simons ◽  
Kamel Alhanout ◽  
Raphaël E. Duval

Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Abu Sayed Chowdhury ◽  
Douglas R. Call ◽  
Shira L. Broschat

Abstract The increasing prevalence of antimicrobial-resistant bacteria drives the need for advanced methods to identify antimicrobial-resistance (AMR) genes in bacterial pathogens. With the availability of whole genome sequences, best-hit methods can be used to identify AMR genes by differentiating unknown sequences with known AMR sequences in existing online repositories. Nevertheless, these methods may not perform well when identifying resistance genes with sequences having low sequence identity with known sequences. We present a machine learning approach that uses protein sequences, with sequence identity ranging between 10% and 90%, as an alternative to conventional DNA sequence alignment-based approaches to identify putative AMR genes in Gram-negative bacteria. By using game theory to choose which protein characteristics to use in our machine learning model, we can predict AMR protein sequences for Gram-negative bacteria with an accuracy ranging from 93% to 99%. In order to obtain similar classification results, identity thresholds as low as 53% were required when using BLASTp.


2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Antonino Pace ◽  
Laura Rinaldi ◽  
Davide Ianniello ◽  
Luca Borrelli ◽  
Giuseppe Cringoli ◽  
...  

Abstract Background Caretta caretta is the most abundant sea turtle species in the Mediterranean, and studies on this species have vastly expanded during recent years, including those investigating gut bacterial and parasitic communities. Members of these communities have been reported with variable prevalence and pathogenicity, mainly depending on their host and environment (e.g. lifespan, distribution, habitat, diet, health status and stressors). Indeed, many species commonly inhabiting the sea turtle gastrointestinal tract exhibit an opportunistic behaviour. This study aimed to provide baseline data on enterobacterial and parasitic composition, through bacteriological culture-based methods and the FLOTAC parasitological technique, in cloacal and faecal samples of 30 live Caretta caretta, examined upon their arrival at the Marine Turtle Research Centre (Portici, Italy). Results Enterobacteriaceae were isolated in 18/23 cloacal samples (78.3%), with Citrobacter and Morganella as the most common genera, followed by Proteus, Enterobacter, Providencia, and Hafnia. Parasitic elements were detected in 11/30 faecal samples (36.7%), with Enodiotrema, Rhytidodes, and Eimeria as most common genera, followed by Pachypsolus and Cymatocarpus. Additionally, Angiodyctium is reported for the first time in this host. The majority (47.8%) of sea turtles hosted exclusively Enterobacteriaceae, whereas 30.4% hosted both parasites and Enterobacteriaceae; the remaining 21.8% hosted neither of the agents. Conclusions Bacteria and parasites evaluated in the present study are common in Mediterranean loggerhead sea turtles, with slight differences between the western and eastern basin. Although naturally present in the gastrointestinal system of free-living sea turtles, their relationship with these hosts might range from mutualism to parasitism. Indeed, members of the gut community might express their pathogenic potential in immune-compromised animals, such as those in rehabilitation facilities. Therefore, it is advisable to include in the standard work-up of rescued sea turtles a screening procedure for such opportunistic agents, in order to better evaluate the animal’s health status and achieve timely intervention with appropriate treatment, thus improving rehabilitation. Furthermore, data collected from free-living sea turtles represent a starting point for investigating wild populations. However, further studies are needed to clarify the differences between sea turtle’s normal gut microbiome and pathobiome.


2020 ◽  
Author(s):  
Nusrat Abedin ◽  
Abdullah Hamed A Alshehri ◽  
Ali M A Almughrbi ◽  
Olivia Moore ◽  
Sheikh Alyza ◽  
...  

Antimicrobial resistance (AMR) has become one of the more serious threats to the global health. The emergence of bacteria resistant to antimicrobial substances decreases the potencies of current antibiotics. Consequently, there is an urgent and growing need for the developing of new classes of antibiotics. Three prepared novel iron complexes have a broad-spectrum antimicrobial activity with minimum bactericidal concentration (MBC) values ranging from 3.5 to 10 mM and 3.5 to 40 mM against Gram-positive and Gram-negative bacteria with antimicrobial resistance phenotype, respectively. Time-kill studies and quantification of the extracellular DNA confirmed the bacteriolytic mode of action of the iron-halide compounds. Additionally, the novel complexes showed significant antibiofilm activity against the tested pathogenic bacterial strains at concentrations lower than the MBC. The cytotoxic effect of the complexes on different mammalian cell lines show sub-cytotoxic values at concentrations lower than the minimum bactericidal concentrations.


Sign in / Sign up

Export Citation Format

Share Document