scholarly journals Pangenome Analysis of Mycobacterium tuberculosis Reveals Core-Drug Targets and Screening of Promising Lead Compounds for Drug Discovery

Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 819
Author(s):  
Hamza Arshad Dar ◽  
Tahreem Zaheer ◽  
Nimat Ullah ◽  
Syeda Marriam Bakhtiar ◽  
Tianyu Zhang ◽  
...  

Tuberculosis, caused by Mycobacterium tuberculosis (M. tuberculosis), is one of the leading causes of human deaths globally according to the WHO TB 2019 report. The continuous rise in multi- and extensive-drug resistance in M. tuberculosis broadens the challenges to control tuberculosis. The availability of a large number of completely sequenced genomes of M. tuberculosis has provided an opportunity to explore the pangenome of the species along with the pan-phylogeny and to identify potential novel drug targets leading to drug discovery. We attempt to calculate the pangenome of M. tuberculosis that comprises a total of 150 complete genomes and performed the phylo-genomic classification and analysis. Further, the conserved core genome (1251 proteins) is subjected to various sequential filters (non-human homology, essentiality, virulence, physicochemical parameters, and pathway analysis) resulted in identification of eight putative broad-spectrum drug targets. Upon molecular docking analyses of these targets with ligands available at the DrugBank database shortlisted a total of five promising ligands with projected inhibitory potential; namely, 2′deoxy-thymidine-5′-diphospho-alpha-d-glucose, uridine diphosphate glucose, 2′-deoxy-thymidine-beta-l-rhamnose, thymidine-5′-triphosphate, and citicoline. We are confident that with further lead optimization and experimental validation, these lead compounds may provide a sound basis to develop safe and effective drugs against tuberculosis disease in humans.

2015 ◽  
Vol 59 (11) ◽  
pp. 6873-6881 ◽  
Author(s):  
Kathryn Winglee ◽  
Shichun Lun ◽  
Marco Pieroni ◽  
Alan Kozikowski ◽  
William Bishai

ABSTRACTDrug resistance is a major problem inMycobacterium tuberculosiscontrol, and it is critical to identify novel drug targets and new antimycobacterial compounds. We have previously identified an imidazo[1,2-a]pyridine-4-carbonitrile-based agent, MP-III-71, with strong activity againstM. tuberculosis. In this study, we evaluated mechanisms of resistance to MP-III-71. We derived three independentM. tuberculosismutants resistant to MP-III-71 and conducted whole-genome sequencing of these mutants. Loss-of-function mutations inRv2887were common to all three MP-III-71-resistant mutants, and we confirmed the role ofRv2887as a gene required for MP-III-71 susceptibility using complementation. The Rv2887 protein was previously unannotated, but domain and homology analyses suggested it to be a transcriptional regulator in the MarR (multiple antibiotic resistance repressor) family, a group of proteins first identified inEscherichia colito negatively regulate efflux pumps and other mechanisms of multidrug resistance. We found that two efflux pump inhibitors, verapamil and chlorpromazine, potentiate the action of MP-III-71 and that mutation ofRv2887abrogates their activity. We also used transcriptome sequencing (RNA-seq) to identify genes which are differentially expressed in the presence and absence of a functional Rv2887 protein. We found that genes involved in benzoquinone and menaquinone biosynthesis were repressed by functional Rv2887. Thus, inactivating mutations ofRv2887, encoding a putative MarR-like transcriptional regulator, confer resistance to MP-III-71, an effective antimycobacterial compound that shows no cross-resistance to existing antituberculosis drugs. The mechanism of resistance ofM. tuberculosisRv2887mutants may involve efflux pump upregulation and also drug methylation.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5277
Author(s):  
Lauv Patel ◽  
Tripti Shukla ◽  
Xiuzhen Huang ◽  
David W. Ussery ◽  
Shanzhi Wang

The advancements of information technology and related processing techniques have created a fertile base for progress in many scientific fields and industries. In the fields of drug discovery and development, machine learning techniques have been used for the development of novel drug candidates. The methods for designing drug targets and novel drug discovery now routinely combine machine learning and deep learning algorithms to enhance the efficiency, efficacy, and quality of developed outputs. The generation and incorporation of big data, through technologies such as high-throughput screening and high through-put computational analysis of databases used for both lead and target discovery, has increased the reliability of the machine learning and deep learning incorporated techniques. The use of these virtual screening and encompassing online information has also been highlighted in developing lead synthesis pathways. In this review, machine learning and deep learning algorithms utilized in drug discovery and associated techniques will be discussed. The applications that produce promising results and methods will be reviewed.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Divneet Kaur ◽  
Rintu Kutum ◽  
Debasis Dash ◽  
Samir K. Brahmachari

Abstract We report the construction of a novel Systems Biology based virtual drug discovery model for the prediction of non-toxic metabolic targets in Mycobacterium tuberculosis (Mtb). This is based on a data-intensive genome level analysis and the principle of conservation of the evolutionarily important genes. In the 1623 sequenced Mtb strains, 890 metabolic genes identified through a systems approach in Mtb were evaluated for non-synonymous mutations. The 33 genes showed none or one variation in the entire 1623 strains, including 1084 Russian MDR strains. These invariant targets were further evaluated for their experimental and in silico essentiality as well as availability of their crystal structure in Protein Data Bank (PDB). Along with this, targets for the common existing antibiotics and the new Tb drug candidates were also screened for their variation across 1623 strains of Mtb for understanding the drug resistance. We propose that the reduced set of these reported targets could be a more effective starting point for medicinal chemists in generating new chemical leads. This approach has the potential of fueling the dried up Tuberculosis (Tb) drug discovery pipeline.


Biomedicines ◽  
2016 ◽  
Vol 4 (4) ◽  
pp. 27 ◽  
Author(s):  
Suhas Vasaikar ◽  
Pooja Bhatia ◽  
Partap Bhatia ◽  
Koon Chu Yaiw

2014 ◽  
Vol 2014 ◽  
pp. 1-22 ◽  
Author(s):  
Qiutian Jia ◽  
Yulin Deng ◽  
Hong Qing

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with two hallmarks:β-amyloid plagues and neurofibrillary tangles. It is one of the most alarming illnesses to elderly people. No effective drugs and therapies have been developed, while mechanism-based explorations of therapeutic approaches have been intensively investigated. Outcomes of clinical trials suggested several pitfalls in the choice of biomarkers, development of drug candidates, and interaction of drug-targeted molecules; however, they also aroused concerns on the potential deficiency in our understanding of pathogenesis of AD, and ultimately stimulated the advent of novel drug targets tests. The anticipated increase of AD patients in next few decades makes development of better therapy an urgent issue. Here we attempt to summarize and compare putative therapeutic strategies that have completed clinical trials or are currently being tested from various perspectives to provide insights for treatments of Alzheimer’s disease.


2014 ◽  
Author(s):  
N. Susantha Chandrasekera ◽  
Mai A Bailey ◽  
Megan Files ◽  
Torey Alling ◽  
Stephanie K Florio ◽  
...  

We demonstrated that the 3-substituted benzothiophene-1,1-dioxide class of compounds are effective inhibitors of Mycobacterium tuberculosis growth under aerobic conditions. We examined substitution at the C-3 position of the benzothiophene-1,1-dioxide series systematically to delineate structure-activity relationships influencing potency and cytotoxicity. Compounds were tested for inhibitory activity against virulent M. tuberculosis and eukaryotic cells. The tetrazole substituent was most potent, with a minimum inhibitory concentration (MIC) of 2.6 µM. However, cytotoxicity was noted with even more potency (Vero cell TC50 = 0.1 µM). Oxadiazoles had good anti-tubercular activity (MICs of 3–8 µM), but imidazoles, thiadiazoles and thiazoles had little activity. Cytotoxicity did not track with anti-tubercular activity, suggesting different targets or mode of action between bacterial and eukaryotic cells. However, we were unable to derive analogs without cytotoxicity; all compounds synthesized were cytotoxic (TC50 of 0.1–5 µM). We conclude that cytotoxicity is a liability in this series precluding it from further development. However, the series has potent anti-tubercular activity and future efforts towards identifying the mode of action could result in the identification of novel drug targets.


2021 ◽  
Author(s):  
Manish Dwivedi ◽  
Priya Giri

Tuberculosis (TB) is one of the deadly diseases in the present era caused by Mycobacterium tuberculosis. Principally, this bacterium attacks the lungs, however, MTB Has been observed affecting any part of the human body including the kidney, spine, and brain. Drug-resistant progression and other associated properties of MTB become a major hurdle in drug discovery to fight against tuberculosis. Moreover, some of the challenging situations such as the low range of chemical agents, the time-consuming process of drug development, the shortage of predictive animal models, and inadequate information of the physicochemical evidence required for effective bacterial penetration, are additional hindrances for the pharmaceutical scientist. In the current chapter, we focus on challenges encountered during drug discovery and need to be overcome as M. tuberculosis has a substantial barrier in its lipid-containing cell wall to inhibit the influx of drugs which is the initial requirement of the drug to show its therapeutic effect. There is also an immediate need for efficient vaccine development which may show its effect on adolescents and adults along with infants. Investigation on key bacterial targets has been troublesome, in light of the vulnerability around the microenvironments found in vivo and subsequently, the importance of exceptional metabolic pathways. The manuscript is prepared after the extensive literature survey to explore the vigorous approaches in novel drug designing and in proposing potent drug targets. The re-engineering and repositioning of prominent antitubercular drugs are required to attain viable control.


2014 ◽  
Author(s):  
N. Susantha Chandrasekera ◽  
Mai A Bailey ◽  
Megan Files ◽  
Torey Alling ◽  
Stephanie K Florio ◽  
...  

We demonstrated that the 3-substituted benzothiophene-1,1-dioxide class of compounds are effective inhibitors of Mycobacterium tuberculosis growth under aerobic conditions. We examined substitution at the C-3 position of the benzothiophene-1,1-dioxide series systematically to delineate structure-activity relationships influencing potency and cytotoxicity. Compounds were tested for inhibitory activity against virulent M. tuberculosis and eukaryotic cells. The tetrazole substituent was most potent, with a minimum inhibitory concentration (MIC) of 2.6 µM. However, cytotoxicity was noted with even more potency (Vero cell TC50 = 0.1 µM). Oxadiazoles had good anti-tubercular activity (MICs of 3–8 µM), but imidazoles, thiadiazoles and thiazoles had little activity. Cytotoxicity did not track with anti-tubercular activity, suggesting different targets or mode of action between bacterial and eukaryotic cells. However, we were unable to derive analogs without cytotoxicity; all compounds synthesized were cytotoxic (TC50 of 0.1–5 µM). We conclude that cytotoxicity is a liability in this series precluding it from further development. However, the series has potent anti-tubercular activity and future efforts towards identifying the mode of action could result in the identification of novel drug targets.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 722 ◽  
Author(s):  
Arijit Bhattacharya ◽  
Audrey Corbeil ◽  
Rubens L. do Monte-Neto ◽  
Christopher Fernandez-Prada

Leishmaniasis (Leishmania species), sleeping sickness (Trypanosoma brucei), and Chagas disease (Trypanosoma cruzi) are devastating and globally spread diseases caused by trypanosomatid parasites. At present, drugs for treating trypanosomatid diseases are far from ideal due to host toxicity, elevated cost, limited access, and increasing rates of drug resistance. Technological advances in parasitology, chemistry, and genomics have unlocked new possibilities for novel drug concepts and compound screening technologies that were previously inaccessible. In this perspective, we discuss current models used in drug-discovery cascades targeting trypanosomatids (from in vitro to in vivo approaches), their use and limitations in a biological context, as well as different examples of recently discovered lead compounds.


2020 ◽  
Vol 10 (13) ◽  
pp. 4629 ◽  
Author(s):  
Aaron Goff ◽  
Daire Cantillon ◽  
Leticia Muraro Wildner ◽  
Simon J Waddell

Multi-omics strategies are indispensable tools in the search for new anti-tuberculosis drugs. Omics methodologies, where the ensemble of a class of biological molecules are measured and evaluated together, enable drug discovery programs to answer two fundamental questions. Firstly, in a discovery biology approach, to find new targets in druggable pathways for target-based investigation, advancing from target to lead compound. Secondly, in a discovery chemistry approach, to identify the mode of action of lead compounds derived from high-throughput screens, progressing from compound to target. The advantage of multi-omics methodologies in both of these settings is that omics approaches are unsupervised and unbiased to a priori hypotheses, making omics useful tools to confirm drug action, reveal new insights into compound activity, and discover new avenues for inquiry. This review summarizes the application of Mycobacterium tuberculosis omics technologies to the early stages of tuberculosis antimicrobial drug discovery.


Sign in / Sign up

Export Citation Format

Share Document