scholarly journals Ethanol Extract of Yak-Kong Fermented by Lactic Acid Bacteria from a Korean Infant Markedly Reduces Matrix Metallopreteinase-1 Expression Induced by Solar Ultraviolet Irradiation in Human Keratinocytes and a 3D Skin Model

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 291 ◽  
Author(s):  
Heanim Park ◽  
Ji Won Seo ◽  
Tae Kyung Lee ◽  
Jae Hwan Kim ◽  
Jong-Eun Kim ◽  
...  

Yak-Kong is a type of black soybean that is colloquially referred to as the “medicinal bean” and it elicits several beneficial effects that are relevant to human health, including attenuating the formation of skin wrinkles. It has previously been shown that soybean extracts elicit additional bioactivity that is fermented by lactic acid bacteria. In this study of lactic acid bacteria strains that were isolated from the stools of breast-feeding infants (<100 days old), we selected Bifidobacterium animalis subsp. Lactis LDTM 8102 (LDTM 8102) as the lead strain for the fermentation of Yak-Kong. We investigated the effects of LDTM 8102-fermented Yak-Kong on solar-ultraviolet irradiation (sUV)-induced wrinkle formation. In HaCaT cells, the ethanol extract of LDTM 8102-fermented Yak-Kong (EFY) effectively reduced sUV-induced matrix metalloproteinase-1 (MMP-1) secretion. The effect of EFY was superior to that of unfermented (UFY)- and Lactis KCTC 5854 (another Bifidobacterium animalis species)-fermented Yak-Kong. Additionally, EFY reduced sUV-induced MMP-1 mRNA expression and promoter activity, as well as the transactivation of AP-1 and phosphorylation of ERK1/2 and JNK1/2. Furthermore, EFY alleviated sUV-induced MMP-1 secretion, the destruction of the epidermis, and degradation of collagen in a three-dimensional (3D) skin culture model. EFY had a higher total polyphenol content and anti-oxidative activity than UFY. Twelve metabolites were significantly (≥2-fold) increased in Yak-Kong extract after fermentation by LDTM 8102. Among them, the metabolites of major isoflavones, such as 6,7,4′-trihydroxyisoflavone (THIF), exerted the reducing effect of MMP-1, which indicated that the isoflavone metabolites contributed to the effect of EFY on MMP-1 expression as active compounds. These findings suggest that EFY is a potent natural material that can potentially prevent sUV-induced wrinkle formation.

2021 ◽  
Vol 49 ◽  
Author(s):  
Juliana Sousa Bogea ◽  
Luciane Manto ◽  
Jucilene Sena Dos Santos ◽  
Lara Franco Dos Santos ◽  
Franciele Maria Gotardo ◽  
...  

Background: Listeria monocytogenes is a pathogenic bacterium that can contaminate food and cause public health problems due its ability to form biofilms and resistance to sanitizers, it is responsible for sanitary and economic losses in food producing establishments. The difficulties in controlling biofilms and increasing resistance to traditional antibacterial agents is motivating studies of alternative potential biological agents for the control of pathogenic biofilms, among which lactic acid bacteria (LABs) are included. The objective of this work was to evaluate the activity of LABs against Listeria monocytogenes biofilm formation on polystyrene plates, a surface commonly used in the food industry.Materials, Methods & Results: Lyophilized commercial strains of Bifidobacterium animalis, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus salivaris and Lactobacillus acidophilus were used. The strain of Listeria monocytogenes (L4) was isolated from polystyrene mats from a poultry slaughterhouse cutting room and demonstrated the ability to attach to microplates and resistance to sanitizers (sodium hypochlorite and hydrogen peroxide) at all times, temperatures and tested surfaces. The antimicrobial activity of LABs was evaluated by the agar diffusion method. The LABs that presented action on Listeria monocytogenes were selected for the inhibition and/or removal of biofilms in microplates, and all experiments were carried out in triplicate. Only Bifidobacterium animalis and Lactobacillus plantarum demonstrated action against Listeria. monocytogenes in the agar diffusion assays and were selected for inhibition and competition assays. Furthermore, competition of LABs against Listeria monocytogenes adhesion was evaluated. There was no significant difference between LABs and Listeria monocytogenes, alone or in combination, at temperatures of 30ºC and 37ºC in the Listeria monocytogenes inhibition assays on polystyrene surface. The lactic acid bacteria evaluated did not demonstrate inhibition of Listeria monocytogenes adhesin testes with optical density visualization, however, it was possible to identify a reduction in Listeria monocytogenes counts with the application of Bifidobacterium animals and Lactobacillus plantarum in the testes of competition against biofilm formation. In competition tests Bifidobacterium animalis and Lactobacillus plantarum have an injunction in Listeria monocytogenes, indicating that these lactic acid bacteria can retard Listeria biofilm formation on polystyrene surfaces and thus help control the pathogen in the food industry.Discussion: A potential mechanism to control biofilm adhesion and formation of pathogens for nutrients and fixation on surfaces, multiplication factors and surfaces are a challenge in controlling biofilms of pathogenic microorganisms, alternative measures to traditional methods for inactivating pathogens and biofilm formers bacteria are necessary. In this sense, lactic acid bacteria generate high levels of bacteriocin and are effective in inhibiting the biofilm of pathogenic bacteria, however, our study did not reveal this. We verified that Bifidobacterium animalis and Lactobacillus plantarum have an inhibitory action on Listeria monocytogenes, indicating that these lactic acid bacteria can be used to delay the formation of biofilms by Listeria on polystyrene surfaces, helping to control this pathogen in food industry.Keywords: control of biofilm, pathogenic bacteria, food industry, polystyrene surface, FTDs.


2020 ◽  
Vol 21 (7) ◽  
pp. 566-577 ◽  
Author(s):  
Huey-Chun Huang ◽  
I. Jung Lee ◽  
Chen Huang ◽  
Tsong-Min Chang

Lactic acid bacteria are beneficial to human health. Lactic acid bacteria have wide applications in food, cosmetic and medicine industries due to being Generally Recognized As Safe (GRAS) and a multitude of therapeutic and functional properties. Previous studies have reported the beneficial effects of lactic acid bacteria, their extracts or ferments on skin health, including improvements in skin conditions and the prevention of skin diseases. Lipoteichoic acid isolated from Lactobacillus plantarum was reported to inhibit melanogenesis in B16F10 melanoma cells. In particular, lipoteichoic acid also exerted anti-photoaging effects on human skin cells by regulating the expression of matrix metalloproteinase- 1. The oral administration of Lactobacillus delbrueckii and other lactic acid bacteria has been reported to inhibit the development of atopic diseases. Additionally, the clinical and histologic evidence indicates that the topical application of lactic acid is effective for depigmentation and improving the surface roughness and mild wrinkling of the skin caused by environmental photo-damage. This review discusses recent findings on the effects of lactic acid bacteria on skin health and their specific applications in skin-whitening cosmetics.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1258
Author(s):  
Erica Pontonio ◽  
Michela Verni ◽  
Cinzia Dingeo ◽  
Elixabet Diaz-de-Cerio ◽  
Daniela Pinto ◽  
...  

Although the hemp seed boasts high nutritional and functional potential, its use in food preparations is still underestimated due to scarce technological properties and the presence of several anti-nutritional factors. Here, an optimization of a biotechnological protocol aimed at improving the antioxidant properties and the protein digestibility of the whole hemp seed has been proposed. Processing based on the use of commercial food grade enzymes and ad hoc selected lactic acid bacteria was tested and the phenolic and protein profiles were investigated through an integrated approach including selective extraction, purification, and identification of the potentially active compounds. The influence of the bioprocessing on the antioxidant activity of the hemp was evaluated both in vitro and on human keratinocytes. The lactic acid bacteria fermentation was the best method to significantly improve the antioxidant potential of the hemp through intense proteolysis which led to both the release of bioactive peptides and the increase in the protein digestibility. Moreover, changes in the phenolic profile allowed a significant protective effect against oxidative stress measured on the human keratinocyte cell line.


2015 ◽  
Vol 6 (8) ◽  
pp. 2620-2625 ◽  
Author(s):  
Nan Zhang ◽  
Dan Li ◽  
XiQing Zhang ◽  
Yan Shi ◽  
HaiKuan Wang

This study developed a synbiotic food through the fermentation of whole oat flour withLactobacillus plantarumTK9 andBifidobacterium animalissubsp.LactisV9.


2021 ◽  
Author(s):  
LINGYU KANG ◽  
Huayou Chen ◽  
Tao Feng ◽  
Keyi Li ◽  
Zhong Ni ◽  
...  

The main objective of this research was to explore the dynamic changes of Bifidobacterium and lactic acid bacteria (LAB) in the process of feed fermentation under anaerobic condition, so as to increase the number of fermented bacteria of Bifidobacterium from the aspect of strain combination. The results showed that when Bifidobacterium lactis ( B. lactis, i.e. Bifidobacterium animalis subsp. lactis ) fermented with Bacillus coagulans or Lactobacillus paracasei , the maximum number of B. lactis in those samples was 9.42 times and 4.64 times of that of fermented sample with B. lactis only. The soybean meal was fermented by B. lactis, L. paracasei and B. coagulans , and the number of B. lactis reached the maximum after fermented 10 days, which was 6.13 times of that in unfermented sample. The reducing sugar content and highest activity of α-galactosidase were higher than the control. These results suggest that B . coagulans and L . paracasei can promote the growth of B. lactis . It is inferred that B . coagulans can metabolize normally in aerobic, micro-aerobic and anaerobic environments, consume oxygen, produce digestive enzymes, and cooperate with L . paracasei to produce metabolic products benefit for the growth of B. lactis .


2002 ◽  
Vol 28 (1) ◽  
pp. 1-6 ◽  
Author(s):  
E Simova ◽  
D Beshkova ◽  
A Angelov ◽  
Ts Hristozova ◽  
G Frengova ◽  
...  

2020 ◽  
Vol 29 (12) ◽  
pp. 59-63
Author(s):  
O.I. Parakhina ◽  
◽  
M.N. Lokachuk ◽  
L.I. Kuznetsova ◽  
E.N. Pavlovskaya ◽  
...  

The research was carried out within the framework of the theme of state assignment № 0593–2019–0008 «To develop theoretical foundations for creating composite mixtures for bakery products using physical methods of exposure that ensure homogeneity, stability of mixtures and bioavailability of nutrients, to optimize diets population of Russia». The data on the species belonging of new strains of lactic acid bacteria and yeast isolated from samples of good quality gluten-free starter cultures are presented. A comparative assessment of the antagonistic and acid-forming activity of strains of lactic acid bacteria and the fermentative activity of yeast was carried out. The composition of microbial compositions from selected strains of LAB and yeast was developed. The influence of the starter culture on the new microbial composition on the physicochemical, organoleptic indicators of the bread quality and resistance to mold and ropy-disease was investigated.


Sign in / Sign up

Export Citation Format

Share Document