scholarly journals The Effects of Intensive Neurorehabilitation on Sequence Effect in Parkinson's Disease Patients With and Without Freezing of Gait

2021 ◽  
Vol 12 ◽  
Author(s):  
Alessia Putortì ◽  
Michele Corrado ◽  
Micol Avenali ◽  
Daniele Martinelli ◽  
Marta Allena ◽  
...  

Background: The sequence effect (SE), defined as a reduction in amplitude of repetitive movements, is a common clinical feature of Parkinson's disease (PD) and is supposed to be a major contributor to freezing of gait (FOG). During walking, SE manifests as a step-by-step reduction in step length when approaching a turning point or gait destination, resulting in the so-called destination sequence effect (dSE). Previous studies explored the therapeutic effects of several strategies on SE, but none of them evaluated the role of an intensive rehabilitative program.Objectives: Here we aim to study the effects of a 4-week rehabilitative program on dSE in patients with PD with and without FOG.Methods: Forty-three patients (30 males, 70.6 ± 7.5 years old) with idiopathic PD were enrolled. The subjects were divided into two groups: patients with (PD + FOG, n = 23) and without FOG (PD – FOG, n = 20). All patients underwent a standardized 4-week intensive rehabilitation in-hospital program. At hospital admission (T0) and discharge (T1), all subjects were evaluated with an inertial gait analysis for dSE recording.Results: At T0, the dSE was more negative in the PD + FOG group (−0.80 ± 0.6) when compared to the PD – FOG group (−0.39 ± 0.3) (p = 0.007), even when controlling for several clinical and demographic features. At T1, the dSE was reduced in the overall study population (p = 0.001), with a more pronounced improvement in the PD + FOG group (T0: −0.80 ± 0.6; T1: −0.23 ± 0.4) when compared to the PD – FOG group (T0: −0.39 ± 0.3; T1: −0.22 ± 0.5) (p = 0.012). At T1, we described in the overall study population an improvement in speed, cadence, stride duration, and stride length (p = 0.001 for all variables).Conclusions: dSE is a core feature of PD gait dysfunction, specifically in patients with FOG. A 4-week intensive rehabilitative program improved dSE in PD patients, exerting a more notable beneficial effect in the PD + FOG group.

Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 715
Author(s):  
Emilio Fernández-Espejo ◽  
Fernando Rodríguez de Fonseca ◽  
Juan Suárez ◽  
Eduardo Tolosa ◽  
Dolores Vilas ◽  
...  

Background. Salivary α-synuclein (aSyn) and its nitrated form, or 3-nitrotyrosine-α-synuclein (3-NT-αSyn), hold promise as biomarkers for idiopathic Parkinson’s disease (IPD). Nitrative stress that is characterized by an excess of 3-nitrotyrosine proteins (3-NT-proteins) has been proposed as a pathogenic mechanism in IPD. The objective is to study the pathological role of native αSyn, 3-NT-αSyn, and 3-NT-proteins in the saliva and submandibulary glands of patients with IPD. Methods. The salivary and serum αSyn and 3-NT-proteins concentration is evaluated with ELISA in patients and controls. Correlations of αSyn and 3-NT-proteins content with clinical features of the disease are examined. Immunohistochemical 3-NT-αSyn expression in submandibulary gland sections is analyzed. Results. (a) Salivary concentration and saliva/serum ratios of native αSyn and 3-NT-proteins are similar in patients and controls; (b) salivary αSyn and 3-NT-proteins do not correlate with any clinical feature; and (c) three patterns of 3-NT-αSyn-positive inclusions are observed on histological sections: rounded “Lewy-type” aggregates of 10–25 µm in diameter, coarse deposits with varied morphology, and spheroid inclusions or bodies of 3–5 µm in diameter. “Lewy-type” and coarse inclusions are observed in the interlobular connective tissue of the gland, and small-sized bodies are located within the cytoplasm of duct cells. “Lewy-type” inclusions are only observed in patients, and the remaining patterns of inclusions are observed in both the patients and controls. Conclusions. The patients’ saliva presents a similar concentration of native αSyn and 3-nitrotyrosine-proteins than that of the controls, and no correlations with clinical features are found. These findings preclude the utility of native αSyn in the saliva as a biomarker, and they indicate the absence of nitrative stress in the saliva and serum of patients. As regards nitrated αSyn, “Lewy-type” inclusions expressing 3-NT-αSyn are observed in the patients, not the controls—a novel finding that suggests that a biopsy of the submandibulary gland, if proven safe, could be a useful technique for diagnosing IPD. Finally, to our knowledge, this is also the first description of 3-NT-αSyn-immunoreactive intracytoplasmic bodies in cells that are located outside the nervous system. These intracytoplasmic bodies are present in duct cells of submandibulary gland sections from all subjects regardless of their pathology, and they can represent an aging or involutional change. Further immunostaining studies with different antibodies and larger samples are needed to validate the data.


2014 ◽  
Vol 20 (12) ◽  
pp. 1036-1044 ◽  
Author(s):  
Fei-Long Zhang ◽  
Yi He ◽  
Yan Zheng ◽  
Wen-Jing Zhang ◽  
Qi Wang ◽  
...  

Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lucas Rodrigues Nascimento ◽  
Ester Miyuki Nakamura-Palacios ◽  
Augusto Boening ◽  
Daniel Lyrio Cabral ◽  
Alessandra Swarowsky ◽  
...  

Abstract Background Transcranial direct current stimulation (tDCS) has the potential to modulate cortical excitability and enhance the effects of walking training in people with Parkinson’s disease. This study will examine the efficacy of the addition of tDCS to a task-specific walking training to improve walking and mobility and to reduce falls in people with Parkinson’s disease. Methods This is a two-arm, prospectively registered, randomized trial with concealed allocation, blinded assessors, participants and therapists, and intention-to-treat analysis. Twenty-four individuals with Parkinson’s disease, categorized as slow or intermediate walkers (walking speeds ≤ 1.0 m/s), will be recruited. The experimental group will undertake a 30-min walking training associated with tDCS, for 4 weeks. The control group will undertake the same walking training, but with sham-tDCS. The primary outcome will be comfortable walking speed. Secondary outcomes will include walking step length, walking cadence, walking confidence, mobility, freezing of gait, fear of falling, and falls. Outcomes will be collected by a researcher blinded to group allocation at baseline (week 0), after intervention (week 4), and 1 month beyond intervention (week 8). Discussion tDCS associated with walking training may help improve walking of slow and intermediate walkers with Parkinson’s disease. If walking is enhanced, the benefits may be accompanied by better mobility and reduced fear of falling, and individuals may experience greater free-living physical activity at home and in the community. Trial registration Brazilian Registry of Clinical Trials (ReBEC) RBR-6bvnx6. Registered on September 23, 2019


2020 ◽  
Vol 11 ◽  
Author(s):  
Alexis Lheureux ◽  
Thibault Warlop ◽  
Charline Cambier ◽  
Baptiste Chemin ◽  
Gaëtan Stoquart ◽  
...  

Parkinson’s Disease patients suffer from gait impairments such as reduced gait speed, shortened step length, and deterioration of the temporal organization of stride duration variability (i.e., breakdown in Long-Range Autocorrelations). The aim of this study was to compare the effects on Parkinson’s Disease patients’ gait of three Rhythmic Auditory Stimulations (RAS), each structured with a different rhythm variability (isochronous, random, and autocorrelated). Nine Parkinson’s Disease patients performed four walking conditions of 10–15 min each: Control Condition (CC), Isochronous RAS (IRAS), Random RAS (RRAS), and Autocorrelated RAS (ARAS). Accelerometers were used to assess gait speed, cadence, step length, temporal organization (i.e., Long-Range Autocorrelations computation), and magnitude (i.e., coefficient of variation) of stride duration variability on 512 gait cycles. Long-Range Autocorrelations were assessed using the evenly spaced averaged Detrended Fluctuation Analysis (α-DFA exponent). Spatiotemporal gait parameters and coefficient of variation were not modified by the RAS. Long-Range Autocorrelations were present in all patients during CC and ARAS although all RAS conditions altered them. The α-DFA exponents were significantly lower during IRAS and RRAS than during CC, exhibiting anti-correlations during IRAS in seven patients. α-DFA during ARAS was the closest to the α-DFA during CC and within normative data of healthy subjects. In conclusion, Isochronous RAS modify patients’ Long-Range Autocorrelations and the use of Autocorrelated RAS allows to maintain an acceptable level of Long-Range Autocorrelations for Parkinson’s Disease patients’ gait.


Healthcare ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 740
Author(s):  
Mahmood Saleh Alzubaidi ◽  
Uzair Shah ◽  
Haider Dhia Zubaydi ◽  
Khalid Dolaat ◽  
Alaa A. Abd-Alrazaq ◽  
...  

Background: Parkinson’s Disease (PD) is a chronic neurodegenerative disorder that has been ranked second after Alzheimer’s disease worldwide. Early diagnosis of PD is crucial to combat against PD to allow patients to deal with it properly. However, there is no medical test(s) available to diagnose PD conclusively. Therefore, computer-aided diagnosis (CAD) systems offered a better solution to make the necessary data-driven decisions and assist the physician. Numerous studies were conducted to propose CAD to diagnose PD in the early stages. No comprehensive reviews have been conducted to summarize the role of AI tools to combat PD. Objective: The study aimed to explore and summarize the applications of neural networks to diagnose PD. Methods: PRISMA Extension for Scoping Reviews (PRISMA-ScR) was followed to conduct this scoping review. To identify the relevant studies, both medical databases (e.g., PubMed) and technical databases (IEEE) were searched. Three reviewers carried out the study selection and extracted the data from the included studies independently. Then, the narrative approach was adopted to synthesis the extracted data. Results: Out of 1061 studies, 91 studies satisfied the eligibility criteria in this review. About half of the included studies have implemented artificial neural networks to diagnose PD. Numerous studies included focused on the freezing of gait (FoG). Biomedical voice and signal datasets were the most commonly used data types to develop and validate these models. However, MRI- and CT-scan images were also utilized in the included studies. Conclusion: Neural networks play an integral and substantial role in combating PD. Many possible applications of neural networks were identified in this review, however, most of them are limited up to research purposes.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244676
Author(s):  
Kamila Poláková ◽  
Evžen Růžička ◽  
Robert Jech ◽  
David Kemlink ◽  
Jan Rusz ◽  
...  

Background Gait disturbances have emerged as some of the main therapeutic concerns in late-stage Parkinson’s disease (PD) treated with dopaminergic therapy and deep brain stimulation (DBS). External cues may help to overcome freezing of gait (FOG) and improve some of the gait parameters. Aim To evaluate the effect of 3D visual cues and STN-DBS on gait in PD group. Methods We enrolled 35 PD patients treated with DBS of nucleus subthalamicus (STN-DBS). Twenty-five patients (5 females; mean age 58.9 ±6.3) and 25 sex- and age-matched controls completed the gait examination. The gait in 10 patients deteriorated in OFF state. The severity of PD was evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS) and Hoehn and Yahr (HY). The PD group filled the Falls Efficacy Scale-International (FES) and Freezing of Gait Questionnaire (FOGQ). Gait was examined using the GaitRite Analysis System, placed in the middle of the 10m marked path. The PD group was tested without dopaminergic medication with and without visual cueing together with the DBS switched ON and OFF. The setting of DBS was double-blind and performed in random order. Results The UPDRS was 21.9 ±9.5 in DBS ON state and 41.3 ±13.7 in DBS OFF state. HY was 2.5 ±0.6, FES 12.4 ±4.1 and FOGQ 9.4 ±5.7. In the DBS OFF state, PD group walked more slowly with shorter steps, had greater step length variability and longer duration of the double support phase compared to healthy controls. The walking speed and step length increased in the DBS ON state. The double support phase was reduced with 3D visual cueing and DBS; the combination of both cueing and DBS was even more effective. Conclusion Cueing with 3D visual stimuli shortens the double support phase in PD patients treated with DBS-STN. The DBS is more effective in prolonging step length and increasing gait speed. We conclude that 3D visual cueing can improve walking in patients with DBS.


2020 ◽  
Author(s):  
Minji Son ◽  
Sang-Myung Cheon ◽  
Changhong Youm ◽  
Jae Kim

Abstract Patients with Parkinson’s disease (PD) suffer from walking disturbances. This study was done to comprehensively analyze walking characteristics of PD, including forward and backward walking and turning. Impacts of freezing of gait (FoG) were also determined. Forward and backward walking and 360° turning was recorded at preferred speed in defined ‘off’ state. PD showed narrower step length, slower walking speed, and higher asymmetry index (AI) of step length during forward and backward walking. During turning, PD had more turning steps, longer turning time, and shorter step length than control. There was no difference at forward walking according to FoG, but freezer showed narrower step length and decreased range of motion in ankle joints at backward walking. Freezer showed longer step time and higher AI of step length at turning. The severity of FoG was correlated with step length and walking speed during forward and backward walking, total step count, total step time, and walking speed during turning. Comprehensive analysis showed that PD had narrower step length, slower walking speed, and increased asymmetry of step length. These features were the most prominent during turning, followed by backward and forward walking. Impacts of FoG were also the most prominent during turning.


2020 ◽  
Vol 34 (10) ◽  
pp. 954-963
Author(s):  
Jana Seuthe ◽  
Nicholas D’Cruz ◽  
Pieter Ginis ◽  
Jos Steffen Becktepe ◽  
Burkhard Weisser ◽  
...  

Background Freezing of gait (FOG) in Parkinson’s disease (PD) is associated with gait asymmetry and switching difficulty. A split-belt treadmill may potentially address those deficits. Objective To investigate the immediate and retention effects of one-session split-belt treadmill training (SBT) in contrast to regular tied-belt treadmill training (TBT) on gait asymmetry and adaptation in people with PD and FOG (PD + FOG) and healthy controls (HC). Additionally, to investigate differential effects of 3 SBT protocols and compare different gait adaptation outcomes. Methods PD + FOG (n = 45) and HC (n = 36) were randomized to 1 of 3 SBT groups (belt speeds’ ratio 0.75:1; 0.5:1 or changing ratios) or TBT group. Participants were tested at Pre, Post, and Retention after one treadmill training session. Gait asymmetry was measured during a standardized adaptation test on the split-belt treadmill Results SBT proved beneficial for gait adaptation in PD + FOG and HC ( P < .0001); however, HC improved more. SBT with changing ratios demonstrated significant effects on gait adaptation from Pre to Post in PD + FOG, supported by strong effect sizes ( d = 1.14) and improvements being retained for 24 hours. Mean step length asymmetry during initial exposure was lower in HC compared with PD + FOG ( P = .035) and differentiated best between the groups. Conclusions PD + FOG improved gait adaptation after a single SBT session although effects were smaller than in HC. SBT with changing ratios was the most effective to ameliorate gait adaptation in PD + FOG. These promising results warrant future study on whether long-term SBT strengthens adaptation in PD + FOG and has potential to induce a better resilience to FOG. Clinical trial ID: NCT03725215.


Sign in / Sign up

Export Citation Format

Share Document