scholarly journals FRI-1 Is an Anti-Cancer Isoquinolinequinone That Inhibits the Mitochondrial Bioenergetics and Blocks Metabolic Shifts by Redox Disruption in Breast Cancer Cells

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1618
Author(s):  
Miguel Córdova-Delgado ◽  
Sebastián Fuentes-Retamal ◽  
Charlotte Palominos ◽  
Camila López-Torres ◽  
Daniela Guzmán-Rivera ◽  
...  

Since breast cancer (BC) cells are dependent on mitochondrial bioenergetics for promoting proliferation, survival, and metastasis, mitochondria highlight as an important target for anticancer drug discovery. FRI-1, methyl 1, 3-dimethyl-5, 8-dioxo-5, 8-dihydro-4-isoquinolinecarboxylate, was previously described as a selective cytotoxic compound on cancer cell lines, however, details on the mechanism of action remain unknown. In this work, we describe that FRI-1 inhibits mitochondrial bioenergetics, producing apoptosis in MCF7 and MDA-MB-231 BC cell lines. FRI-1 decreases the maximal oxygen consumption rate (OCR), Δψm, NADH, and ATP levels, with a notable increase of mitochondrial reactive oxygen species (ROS) production, promoting AMPK activation with pro-survival effects. Moreover, FRI-1 inhibits the metabolic remodeling to glycolysis induced by oligomycin. In isolated tumoral mitochondria, FRI-1 increases Complex I and III-dependent OCR state 2, and this is sensitive to rotenone and antimycin A inhibitor additions, suggesting a redox cycling event. Remarkably, α-ketoglutarate and lipoic acid supplementation reversed and promoted, respectively, the FRI-1-induced apoptosis, suggesting that mitochondrial redox disruption affects 2-oxoglutarate dehydrogenase (OGDH) activity, and this is involved in their anticancer mechanism. Consistent with this, the combination of FRI-1 and CPI-613, a dual inhibitor of redox-sensible tricarboxylic acid (TCA) cycle enzymes PDH and OGDH, produced extensive BC cell death. Taken together, our results suggest that FRI-1 exhibits anticancer effects through inhibition of mitochondrial bioenergetics by redox disruption in BC cells.

2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Wasitta Rachakhom ◽  
Patompong Khaw-on ◽  
Wilart Pompimon ◽  
Ratana Banjerdpongchai

Dihydrochalcone derivatives are active compounds that have been purified from the Thai medicinal plant Cyathostemma argenteum. The objectives of this study were to investigate the effects of two dihydrochalcone derivatives on human breast cancer MDA-MB-231 and MCF-7 cell proliferation and to study the relevant mechanisms involved. The two dihydrochalcone derivatives are 4′,6′-dihydroxy-2′,4-dimethoxy-5′-(2″-hydroxybenzyl)dihydrochalcone (compound 1) and calomelanone (2′,6′-dihydroxy-4,4′-dimethoxydihydrochalcone, compound 2), both of which induced cytotoxicity toward both cell lines in a dose-dependent manner by using MTT assay. Treatment with both derivatives induced apoptosis as determined by annexin V-FITC/propidium iodide employing flow cytometry. The reduction of mitochondrial transmembrane potential (staining with 3,3′-dihexyloxacarbocyanine iodide, DiOC6, employing a flow cytometer) was established in the compound 1-treated cells. Compound 1 induced caspase-3, caspase-8, and caspase-9 activities in both cell lines, as has been determined by specific colorimetric substrates and a spectrophotometric microplate reader which indicated the involvement of both the extrinsic and intrinsic pathways. Calcium ion levels in mitochondrial and cytosolic compartments increased in compound 1-treated cells as detected by Rhod-2AM and Fluo-3AM intensity, respectively, indicating the involvement of the endoplasmic reticulum (ER) stress pathway. Compound 1 induced cell cycle arrest via enhanced atm and atr expressions and by upregulating proapoptotic proteins, namely, Bim, Bad, and tBid. Moreover, compound 1 significantly inhibited the EGFR/MAPK signaling pathway. In conclusion, compound 1 induced MDA-MB-231 and MCF-7 cell apoptosis via intrinsic, extrinsic, and ER stress pathways, whereas it ameliorated the EGFR/MAPK pathway in the MCF-7 cell line. Consequently, it is believed that compound 1 could be effectively developed for cancer treatments.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 13100-13100
Author(s):  
L. Witters ◽  
A. Witkoski ◽  
M. Planas-Silva ◽  
J. Viallet ◽  
M. S. Berger ◽  
...  

13100 Background: The epidermal growth factor receptor (EGFR; ErbB1) and HER-2/neu (ErbB2), members of the ErbB family of receptor tyrosine kinases, are overexpressed in a variety of human tumors and overexpression generally correlates with poor prognosis and decreased survival. Use of inhibitors of these receptors as monotherapies, e.g., trastuzumab, Iressa, and erlotinib, has led to advances in treatment, but many patients do not respond or develop resistance. The anti-apoptotic protein, Bcl-2, is also overexpressed in a number of human tumors. Inhibitors of Bcl-2 induce apoptosis and sensitize cancer cells to other therapies. This study assesses the effects of a combination of a reversible inhibitor of both EGFR and HER-2/neu that is similar to lapatinib (GW2974) and a pan inhibitor of the Bcl-2 family (GX15–070: Gemin X Biotechnologies, Inc.) on the growth of human breast cancer cells. Methods: The MCF-7 human breast cancer cell line transfected with a control vector, MCF/neo, and the HER-2/neu transfected MCF-7 cell line, MCF/18, were treated with various concentrations of GW2974 (0.25–10 μM) and/or the GX15–070 pan Bcl-2 inhibitor (50–500 nM). After a 3 day exposure, cell number was determined using the colorimetric MTT tetrazolium dye assay. Percent of control was normalized to corresponding concentrations of the solvent for both agents (DMSO). Results: Treatment with the GW2974 dual inhibitor or the GX15–070 pan Bcl-2 inhibitor resulted in dose-dependent growth inhibition in both the control and HER-2/neu transfected MCF-7 cell lines. The combination of both agents produced synergistic growth inhibition in both cell lines as confirmed by isobologram analysis. Conclusions: This study has demonstrated synergy with the combination of a dual inhibitor of EGFR and HER-2/neu and an inhibitor of Bcl-2 in control and HER-2/neu overexpressing MCF-7 human breast cancer cells. This finding warrants an evaluation of this combination in clinical trials for the treatment of patients with metastatic breast cancer. [Table: see text]


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e14637-e14637
Author(s):  
L. Ko ◽  
J. Allalunis-Turner

e14637 Background: DCA is a generic, orally available, small molecule metabolic modulator that has an established history in the treatment of mitochondrial diseases and lactic acidosis. DCA inhibits pyruvate dehydrogenase kinase (PDK), an inhibitor of pyruvate dehydrogenase, a key enzyme in glucose metabolism. DCA preferentially shifts glucose metabolism in cancer cells from glycolysis to glucose oxidation, reversing the unique aerobic glycolysis found in solid tumors. DCA induced apoptosis in cancer cells as evidenced by the efflux of cytochrome c and apoptosis-inducing factor from the mitochondria. Recent studies suggested apoptosis induction by DCA in glioblastoma, endometrial, prostate, and non-small cell lung cancers. In this study we attempt to establish a link between DCA and apoptosis in breast cancer cell lines. Methods: Six breast cancer cell lines were investigated (BT474, MCF-7, MDA-MB231, MDA- MB468, SKBR3, T47D). Quantitative real-time polymerase chain reaction (RT-PCR) was performed using Taqman probes to identify increased DNA templates of PDK isoforms 1–4, using DCA concentrations from 0 to 20mM. Western blots were performed to identify increased expression of PDK isoforms and correlate findings with Taqman. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)- 2-(4-sulfophenyl)-2H-tetrazolium) assays were performed to measure decreased mitochondrial activity and cytotoxicity. Flow cytometry using annexin V and propidium iodide was performed to measure apoptosis and cell death. Results: RT-PCR showed increased DNA expression of all PDK isoforms in MDA-MB231 cells after DCA treatment. The effect was most pronounced at 10mM concentration. 10mM of DCA also increased DNA expression of all PDK isoforms in MCF-7 cells, and PDK1 in T47D cells. MTS assays showed increased cell kill and decreased mitochondrial activity in all six cell lines, with IC50 ranging between 20mM and 30 mM. Flow cytometry showed increased apoptosis induced by DCA at IC50 for BT474 and MCF-7 cell lines. Conclusions: Apoptosis appears to play a role in the mechanism of DCA in breast cancer, with increased PDK isoform expressions, cytotoxicity and decreased mitochondrial activity. Data from flow cytometry suggested DCA-induced apoptosis in two cell lines. No significant financial relationships to disclose.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e14099-e14099 ◽  
Author(s):  
Naoise C Synnott ◽  
Matthias R Bauer ◽  
Stephen F. Madden ◽  
Alyson M. Murray ◽  
Rut Klinger ◽  
...  

e14099 Background:The identification of a targeted therapy for patients with triple-negative breast cancer (TNBC) is one of the most urgent needs in breast cancer therapeutics. Since the p53 gene is mutated in approximately 80% of TNBC patients, it is a potential therapeutic target for this form of breast cancer. PK11007 is a 2-sulfonypyrimidine that stabilizes and reactivates mutant p53 (Bauer et al, PNAS 2016). The compound recently was reported to preferentially decrease viability in p53-compromised cancer cells. The aim of this investigation was to evaluate PK11007 as a potential new treatment for TNBC. Methods: Cell viability was determined using the MTT assay. Apoptosis was detected using Annexin V Apoptosis Detection Kit. Migration was determined by Transwell migration assay. Knockdowns of p53 protein were carried out using predesigned Flexitube sequences (Qiagen). Results: IC50 values for inhibition of proliferation by PK11007 in the panel of 17 breast cell lines ranged from 2.3 to 42.2 μM. There were significantly lower IC50values for TNBC than for non-TNBC cell lines (p = 0.03) and for p53-mutated cell lines compared with p53 WT cells (p = 0.003). Response to PK11007 however, was independent of ER or HER2 status of the cells. In addition, PK11007 induced apoptosis and inhibited migration in p53 mutant cell lines. Using RNAseq and gene ontogeny analysis, we found that PK11007 altered the expression of genes enriched in pathways involved in regulated cell death, regulation of apoptosis, signal transduction, protein refolding and locomotion. To establish if PK11007 acts by targeting mutant p53, we used siRNA to knockdown p53 in 3 p53-mutated TNBC cell lines. Reduction in p53 protein levels resulted in a significant decrease in the growth inhibitory effects of PK11007, in all 3 cell lines investigated, suggesting that PK11007 mediates growth inhibition via p53. The observations that PK11007 inhibited cell growth, induced apoptosis, blocked cell migration and altered genes involved in cell death, are all consistent with the ability of PK11007 to activate mutant p53. Conclusions: Based on our data, we conclude that targeting mutant p53 with PK11007 is a potential approach for treating p53-mutated TNBC.


2017 ◽  
Vol 46 (4) ◽  
pp. 575-581 ◽  
Author(s):  
Siti P.M. Bohari ◽  
Hamidreza Aboulkheyr E.S. ◽  
Nur S. Johan ◽  
Nursyuhada F. Zainudin

2022 ◽  
Vol 11 ◽  
Author(s):  
Xinyu Zhou ◽  
Abel Soto-Gamez ◽  
Fleur Nijdam ◽  
Rita Setroikromo ◽  
Wim J. Quax

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype independent of estrogen receptor, progesterone receptor, or human epidermal growth factor receptor 2. It has a poor prognosis and high recurrence. Due to its limited treatment options in the clinic, novel therapies are urgently needed. Single treatment with the death receptor ligand TRAIL was shown to be poorly effective. Recently, we have shown that artemisinin derivatives enhance TRAIL-induced apoptosis in colon cancer cells. Here, we utilized transferrin (TF) to enhance the effectiveness of dihydroartemisinin (DHA) in inducing cell death in TNBC cell lines (MDA-MB-231, MDA-MB-436, MDA-MB-468 and BT549). We found that the combination of DHA-TF and the death receptor 5-specific TRAIL variant DHER leads to an increase in DR5 expression in all four TNBC cell lines, while higher cytotoxicity was observed in MDA-MB-231, and MDA-MB-436. All the data point to the finding that DHA-TF stimulates cell death in TNBC cells, while the combination of DHA-TF with TRAIL variants will trigger more cell death in TRAIL-sensitive cells. Overall, DHA-TF in combination with TRAIL variants represents a potential novel combination therapy for triple-negative breast cancer.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3705-3705
Author(s):  
Seongseok Yun ◽  
Nicole D. Vincelette ◽  
Katherine L. B. Knorr ◽  
Luciana L. Almada ◽  
Paula A. Schneider ◽  
...  

Abstract The mammalian target of rapamycin (mTOR), a kinase that regulates proliferation and apoptosis, has been extensively evaluated as a therapeutic target in hematologic malignancies. Rapamycin analogues, which partially inhibit mTOR complex 1 (mTORC1), showed limited anti-tumor activity due to feedback mechanisms involving mTORC2 and incomplete inhibition of mTORC1. Thus, attention has turned to agents targeting both mTOR complexes by binding the mTOR kinase domain. The purpose of this study was to delineate the mechanisms of mTOR dual inhibitor induced apoptosis in human neoplastic lymphoid cells in vitro. MTS assays and propidium iodide staining followed by flow cytometry for subdiploid populations demonstrated that OSI-027 and MLN0128 inhibited cell proliferation and induced apoptosis in a wide range of lymphoid cell lines including Jurkat, Nalm-6, Molt-4, and SeAX. Raptor and Rictor knockdown in Jurkat and Nalm-6 increased cell death, suggesting both mTOR complexes play a role in apoptosis. 4EBP1 phosphorylation was inhibited by mTOR dual inhibitors, but not by rapamycin. Expression of 4EBP1 T37A/T46A and 4EBP1 T37A/T46A/S65A/T70A, which mimic dephosphorylated 4EBP1, increased Puma mRNA and protein levels as well as apoptosis. Moreover, 4EBP1 knockdown abrogated mTOR dual inhibitor induced Puma upregulation and cell death, further supporting the role of 4EBP1 dephosphorylation in mTORC1 dependent apoptosis. In accord with the known dependence of c-Myc translation on the eIF4E/eIF4G complex, we also observed c-Myc downregulation after treatment with OSI-027, MLN0128 and 4EGI-1, but not rapamycin. Puma induction mirrored c-Myc downregulation under a variety of conditions, including expression of nonphosphorylatable 4EBP1 in parental Jurkat cells or wt 4EBP1 in 4EBP1 deficient cells. Furthermore, c-Myc knockdown induced Puma mRNA and protein as well as increased apoptosis. Collectively, these results support a model in which mTORC1 inhibition, acting through 4EBP1, induces Puma upregulation and apoptosis through c-Myc downregulation. In order to assess the parallel mTORC2-dependent Bim-mediated apoptotic mechanism, we utilized reporter assays and RNAseq experiments. OSI-027-induced Bim promoter activity decreased markedly when the nucleotides -29 to -18 were removed, suggesting that this response element is critical for OSI-027-induced promoter activation. In silico analysis identified eight transcription factors, including SP1, Egr-1, and Myb, that potentially bind this 12-bp region. In RNAseq experiments, we detected a 9-fold increase in Egr-1. Egr-1 upregulation was confirmed by qRT-PCR and immunoblotting after dual inhibitors treatment or Rictor knockdown. Moreover, dominant negative Egr-1 or Egr-1 knockdown diminished dual inhibitor-induced Bim promoter activation and Bim upregulation. Chromatin immunoprecipitation assays demonstrated that OSI-027 enhances binding of Egr-1 to a region of the Bim promoter including bp -29 to -18, further confirming that Egr-1 functions as a direct transcriptional activator for Bim upon mTOR dual inhibitor treatment. NFκB is a known transcription factor for Egr-1 and we observed increased p65 in the nucleus and increased NFκB transcriptional activity after dual inhibitor treatment. Overexpression of S32A/S36A IκB impaired the ability of dual inhibitors to induce NFκB transcriptional activation, Egr-1 mRNA and protein, Bim promoter activation and Bim mRNA and protein upregulation. Collectively, these results suggest that mTORC2 inhibition induces Bim upregulation and apoptosis through NFκB and Egr-1 transactivation. When fresh clinical ALL isolates were exposed to OSI-027 or MLN0128 ex vivo, inhibition of 4EBP1 phosphorylation along with upregulation of Egr-1 and Bim and/or c-Myc downregulation accompanied by Puma induction occurred, indicating that the pathways identified in ALL cell lines can also potentially be engaged in clinical ALLs. These observations not only provide new insight into the survival roles of mTOR in lymphoid malignancies, but also identify alterations that potentially modulate the action of mTOR dual inhibitors. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document