scholarly journals Potential of Persimmon Dietary Fiber Obtained from Byproducts as Antioxidant, Prebiotic and Modulating Agent of the Intestinal Epithelial Barrier Function

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1668
Author(s):  
Julio Salazar-Bermeo ◽  
Bryan Moreno-Chamba ◽  
María Concepción Martínez-Madrid ◽  
Domingo Saura ◽  
Manuel Valero ◽  
...  

Appropriate nutrition targets decrease the risk of incidence of preventable diseases in addition to providing physiological benefits. Dietary fiber, despite being available and necessary in balanced nutrition, are consumed at below daily requirements. Food byproducts high in dietary fiber and free and bonded bioactive compounds are often discarded. Herein, persimmon byproducts are presented as an interesting source of fiber and bioactive compounds. The solvent extraction effects of dietary fiber from persimmon byproducts on its techno- and physio-functional properties, and on the Caco-2 cell model after being subjected to in vitro gastrointestinal digestion and probiotic bacterial fermentation, were evaluated. The total, soluble, and insoluble dietary fiber, total phenolic, carotenoid, flavonoid contents, and antioxidant activity were determined. After in vitro digestion, low quantities of bonded phenolic compounds were detected in all fiber fractions. Moreover, total phenolic and carotenoid contents, as well as antioxidant activity, decreased depending on the extraction solvent, whereas short chain fatty acids production increased. Covalently bonded compounds in persimmon fiber mainly consisted of hydroxycinnamic acids and flavanols. After probiotic bacterial fermentation, few phenolic compounds were determined in all fiber fractions. Results suggest that persimmon’s dietary fiber functional properties are dependent on the extraction process used, which may promote a strong probiotic response and modulate the epithelial barrier function.

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 6
Author(s):  
Juan Esteban Oyarzún ◽  
Marcelo E. Andia ◽  
Sergio Uribe ◽  
Paula Núñez Pizarro ◽  
Gabriel Núñez ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is a major cause of morbidity and mortality worldwide. Additional therapies using functional foods and dietary supplements have been investigated and used in clinical practice, showing them to be beneficial. Honeybee pollen from Chile has shown a large concentration of phenolic compounds and high antioxidant activity. In this work, we characterized twenty-eight bee pollen extracts from the central zone of Chile according to botanical origin, phenolic profile, quercetin concentration, and antioxidant activity (FRAP and ORAC-FL). Our results show a statistically significant positive correlation between total phenolic content and antioxidant capacity. Selected samples were evaluated on the ability to reverse the steatosis in an in vitro cell model using Hepa1-6 cells. The pollen extracts protected Hepa1-6 cells against oxidative damage triggered by 2,2′-azo-bis(2-amidinopropane) dihydrochloride (AAPH)derived free radicals. This effect can be credited to the ability of the phenolic compounds present in the extract to protect the liver cells from chemical-induced injury, which might be correlated to their free radical scavenging potential. Additionally, bee pollen extracts reduce lipid accumulation in a cellular model of steatosis. In summary, our results support the antioxidant, hepatoprotective, and anti-steatosis effect of bee pollen in an in vitro model.


Botanica ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 76-87
Author(s):  
Aziza Lfitat ◽  
Hind Zejli ◽  
Abdelkamel Bousselham ◽  
Yassine El Atki ◽  
Badiaa Lyoussi ◽  
...  

AbstractWe conducted this study to determine and compare the content of phenolic compounds and flavonoids in the argan and olive leaves as well as their antioxidant capacity in aqueous, methanolic, and ethyl acetate extracted fractions. In vitro antioxidant activity was evaluated in comparison with synthetic antioxidants by assessing DPPH• radical scavenging capacity, ferric reducing antioxidant power, scavenging ability by inhibiting the β-carotene/linoleic acid emulsion oxidation, and by the ABTS radical scavenging activity assay. Total phenolic content in argan samples ranged from 221.69 ± 2.07 to 1.32 ± 0.01 mg GAE/g DW and in olive samples from 144.61 ± 0.82 to 1.21 ± 0.02 mg GAE/g DW. Total flavonoids content in argan samples varied from 267.37 ± 1.12 to 25.48 ± 0.02 mg QE/g DW, while in olives from 96.06 ± 0.78 to 10.63 ± 0.05 mg QE/g DW. In vitro antioxidant studies strongly confirmed the antioxidant potency of argan and olive leaves and their richness in secondary metabolites that are effective in free radicals scavenging and metal chelating capacities, indicating their antioxidant power.


2019 ◽  
Author(s):  
Bethany M. Young ◽  
Keerthana Shankar ◽  
Cindy K. Tho ◽  
Amanda R. Pellegrino ◽  
Rebecca L. Heise

ABSTRACTDecellularized tissues offer a unique tool for developing regenerative biomaterials orin vitroplatforms for the study of cell-extracellular matrix (ECM) interactions. One main challenge associated with decellularized lung tissue is that ECM components can be stripped away or altered by the detergents used to remove cellular debris. Without characterizing the composition of lung decellularized ECM (dECM) and the cellular response caused by the altered composition, it is difficult to utilize dECM for regeneration and specifically, engineering the complexities of the alveolar-capillary barrier. This study takes steps towards uncovering if dECM must be enhanced with lost ECM proteins to achieve proper epithelial barrier formation. To achieve this, epithelial barrier function was assessed on dECM coatings with and without the systematic addition of several key basement membrane proteins. After comparing barrier function on collagen, fibronectin, laminin, and dECM in varying combinations as anin vitrocoating, the alveolar epithelium exhibited superior barrier function when dECM was supplemented with laminin as evidenced by trans-epithelial electrical resistance (TEER) and permeability assays. Increased barrier resistance with laminin addition was associated with upregulation of Claudin-18, E- cadherin, and junction adhesion molecule (JAM)-A, and stabilization of zonula occludens (ZO)-1 at junction complexes. The Epac/Rap1 pathway was observed to play a role in the ECM-mediated barrier function determined by protein expression and Epac inhibition. These findings reveal potential ECM coatings and molecular therapeutic targets for improved regeneration with decellularized scaffolds or edema related pathologies.


2013 ◽  
Vol 304 (5) ◽  
pp. G479-G489 ◽  
Author(s):  
Katherine R. Groschwitz ◽  
David Wu ◽  
Heather Osterfeld ◽  
Richard Ahrens ◽  
Simon P. Hogan

Mast cells regulate intestinal barrier function during disease and homeostasis. Secretion of the mast cell-specific serine protease chymase regulates homeostasis. In the present study, we employ in vitro model systems to delineate the molecular pathways involved in chymase-mediated intestinal epithelial barrier dysfunction. Chymase stimulation of intestinal epithelial (Caco-2 BBe) cell monolayers induced a significant reduction in transepithelial resistance, indicating decreased intestinal epithelial barrier function. The chymase-induced intestinal epithelial barrier dysfunction was characterized by chymase-induced protease-activated receptor (PAR)-2 activation and matrix metalloproteinase (MMP)-2 expression and activation. Consistent with this observation, in vitro analysis revealed chymase-induced PAR-2 activation and increased MAPK activity and MMP-2 expression. Pharmacological and small interfering RNA-mediated antagonism of PAR-2 and MMP-2 significantly attenuated chymase-stimulated barrier dysfunction. Additionally, the chymase/MMP-2-mediated intestinal epithelial dysfunction was associated with a significant reduction in the tight junction protein claudin-5, which was partially restored by MMP-2 inhibition. Finally, incubation of Caco-2 BBe cells with chymase-sufficient, but not chymase-deficient, bone marrow-derived mast cells decreased barrier function, which was attenuated by the chymase inhibitor chymostatin. Collectively, these results suggest that mast cell/chymase-mediated intestinal epithelial barrier function is mediated by PAR-2/MMP-2-dependent pathways.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Francisco Erik González-Jiménez ◽  
Juan Alfredo Salazar-Montoya ◽  
Graciano Calva-Calva ◽  
Emma Gloria Ramos-Ramírez

Due to their antioxidant properties, polyphenolic compounds are considered beneficial for human health. In this work, we investigated the polyphenol profile and antioxidant activity of edible tejocote (Crataegus pubescens) fruit extracts by micellar electrokinetic chromatography (MEKC) and HPLC/UV. The major phenolic compounds in the pulp extracts were (+)-catechin (9.17 ± 0.20 mg/100 mg dry fruit), (−)-epicatechin (4.32 ± 0.11 mg/100 mg dry fruit), and chlorogenic acid (5.60 ± 0.24 mg/100 mg dry fruit). The total phenolic content was 168.6 ± 0.9 mg gallic acid equivalent/g dry fruit; the total proanthocyanidin content was 84.6 ± 1.4 mg cyanidin/100 g dry fruit; and the total flavonoid content was 55.89 ± 1.43 mg quercetin/g dry fruit. Interestingly, procyanidins (dimers, trimers, and tetramers of (−)-epicatechin and (+)-catechin) were detected in the extract. This is the first study reporting the presence of polymeric polyphenols in Crataegus pubescens fruit. Accordingly, these fruits demonstrate great potential as a natural source of antioxidant phenolic compounds and could therefore be used as a nutraceutical and functional food.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 542
Author(s):  
Thi Thuy Nguyen ◽  
Lan Phuong Doan ◽  
Thu Huong Trinh Thi ◽  
Hong Ha Tran ◽  
Quoc Long Pham ◽  
...  

This research aimed to investigate the chemical composition of seed oils extracted from three Vietnamese Dalbergia species (D. tonkinensis, D. mammosa, and D. entadoides). The fatty acid profiles and contents of tocopherols and sterols of the seed oils, and total phenolic compounds extracted from the fresh seeds were characterized using different methods. Among the examined samples, D. tonkinensis seed oils showed high contents of linoleic acid (64.7%), whereas in D. mammosa, oleic acid (51.2%) was predominant. In addition, α- and γ-tocopherol and β-sitosterol were major ingredients in the seed oils, whereas ferulic acid and rosmarinic acid are usually predominant in the seeds of these species. Regarding sterol composition, the D. entadoides seed oil figured for remarkably high content of Δ5,23-stigmastadienol (1735 mg/kg) and Δ7-stigmastenol (1298 mg/kg). In addition, extracts with methanol/water (80:20, v/v) of seeds displayed significant in vitro antioxidant activity which was determined by DPPH free radical scavenging assay.


Pharmacology ◽  
2019 ◽  
Vol 105 (1-2) ◽  
pp. 102-108 ◽  
Author(s):  
Norio Nishii ◽  
Tadayuki Oshima ◽  
Min Li ◽  
Hirotsugu Eda ◽  
Kumiko Nakamura ◽  
...  

Introduction: Lubiprostone, a chloride channel activator, is said to reduce epithelial permeability. However, whether lubiprostone has a direct effect on the epithelial barrier function and how it modulates the intestinal barrier function remain unknown. Therefore, the effects of lubiprostone on intestinal barrier function were evaluated in vitro. Methods: Caco-2 cells were used to assess the intestinal barrier function. To examine the expression of claudins, immunoblotting was performed with specific antibodies. The effects of lubiprostone on cytokines (IFNγ, IL-6, and IL-1β) and aspirin-induced epithelial barrier disruption were assessed by transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC) labeled-dextran permeability. Results: IFNγ, IL-6, IL-1β, and aspirin significantly decreased TEER and increased epithelial permeability. Lubiprostone significantly improved the IFNγ-induced decrease in TEER in a dose-dependent manner. Lubiprostone significantly reduced the IFNγ-induced increase in FITC labeled-dextran permeability. The changes induced by IL-6, IL-1β, and aspirin were not affected by lubiprostone. The expression of claudin-1, but not claudin-3, claudin-4, occludin, and ZO-1 was significantly increased by lubiprostone. Conclusion: Lubiprostone significantly improved the IFNγ-induced decrease in TEER and increase in FITC labeled-dextran permeability. Lubiprostone increased the expression of claudin-1, and this increase may be related to the effect of lubiprostone on the epithelial barrier function.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Cuiping Ye ◽  
Chaowen Huang ◽  
Mengchen Zou ◽  
Yahui Hu ◽  
Lishan Luo ◽  
...  

Abstract Background The dysfunction of airway epithelial barrier is closely related to the pathogenesis of asthma. Secreted Hsp90α participates in inflammation and Hsp90 inhibitor protects endothelial dysfunction. In the current study, we aimed to explore the role of secreted Hsp90α in asthmatic airway epithelial barrier function. Methods Male BALB/c mice were sensitized and challenged with HDM to generate asthma model. The 16HBE and Hsp90α-knockdown cells were cultured and treated according to the experiment requirements. Transepithelial Electric Resistance (TEER) and permeability of epithelial layer in vitro, distribution and expression of junction proteins both in vivo and in vitro were used to evaluate the epithelial barrier function. Western Blot was used to evaluate the expression of junction proteins and phosphorylated AKT in cells and lung tissues while ELISA were used to evaluate the Hsp90α expression and cytokines release in the lung homogenate. Results HDM resulted in a dysfunction of airway epithelial barrier both in vivo and in vitro, paralleled with the increased expression and release of Hsp90α. All of which were rescued in Hsp90α-knockdown cells or co-administration of 1G6-D7. Furthermore, either 1G6-D7 or PI3K inhibitor LY294002 suppressed the significant phosphorylation of AKT, which caused by secreted and recombinant Hsp90α, resulting in the restoration of epithelial barrier function. Conclusions Secreted Hsp90α medicates HDM-induced asthmatic airway epithelial barrier dysfunction via PI3K/AKT pathway, indicating that anti-secreted Hsp90α therapy might be a potential treatment to asthma in future.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Saleh Abu-Lafi ◽  
Mahmoud Sami Al-Natsheh ◽  
Reem Yaghmoor ◽  
Fuad Al-Rimawi

The production of olive oil generates massive quantities of by-product called olive mill wastewater (OMWW). The uncontrolled disposal of OMWW poses serious environmental problems. The OMWW effluent is rich in several polyphenolic compounds. Liquid-liquid extraction of OMWW using ethyl acetate solvent was used to enrich phenolic compounds under investigation. Total phenolic and flavonoid content and antioxidant activity of the extract were determined. HPLC coupled to photodiode array (PDA) detector was used to analyze the main three phenolic compounds of OMWW, namely, hydroxytyrosol, tyrosol, and oleuropein. The antimicrobial activity of the extract was also investigated. Additionally, the OMWW extract was used as natural preservative and antioxidants for olive oil. Results showed that OMWW is very rich in phenolic compounds and has strong antioxidant activity. HPLC analysis showed that the extract contains mainly hydroxytyrosol and tyrosol but no oleuropein. The OMWW extract showed also positive activities as antibacterial (gram positive and gram negative) and antifungal as well as activities against yeast. The addition of OMWW extract to olive oil samples has an effect on the stability of olive oil as reflected by its acid value, peroxide value, K232 and K270, and total phenolic content.


Sign in / Sign up

Export Citation Format

Share Document