scholarly journals UPLC-ESI-MS/MS Based Characterization of Active Flavonoids from Apocynum spp. and Anti-Bacteria Assay

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1901
Author(s):  
Gang Gao ◽  
Ning Liu ◽  
Chunming Yu ◽  
Ping Chen ◽  
Jikang Chen ◽  
...  

In the current study, the active flavonoids from Apocynum venetum and Apocynum hendersonii leaf were efficiently characterized using UPLC-ESI-MS/MS, and yielding the highest content of 15.35 mg/g (A. venetum) and 13.28 mg/g (A. hendersonii) respectively. The antioxidant assay in vitro showed that the isolated flavonoid ingredient groups exhibited free radical scavenging activities to DPPH, ABTS and linoleic acid. The antimicrobial assay revealed the isolated flavonoid ingredient from both A. venetum and A. hendorsonii have exerted anti-MRSA and anti-P. aeruginosa effect through disrupting cell integrity and declining ATP. In vivo assay demonstrated that these flavonoid ingredients effectively accelerated MRSA-infected and P. aeruginosa-infected Balb/c mice wound healing. In summary, these results showed that the characterized flavonoid ingredients exhibited great potential as natural antioxidant and antimicrobial agents, and shed light into future potential applications of Apocynum spp.

Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 126
Author(s):  
Chunrui Ma ◽  
Xiao Li ◽  
Kun Yang ◽  
Shangyong Li

Chitooligosaccharide (COS) has been recognized to exhibit efficient anti-oxidant activity. Enzymatic hydrolysis using chitosanases can retain all the amino and hydroxyl groups of chitosan, which are necessary for its activity. In this study, a new chitosanase encoding gene, csnQ, was cloned from the marine Bacillus sp. Q1098 and expressed in Escherichia coli. The recombinant chitosanase, CsnQ, showed maximal activity at pH 5.31 and 60 °C. Determination of CsnQ pH-stability showed that CsnQ could retain more than 50% of its activity over a wide pH, from 3.60 to 9.80. CsnQ is an endo-type chitosanase, yielding chitodisaccharide as the main product. Additionally, in vitro and in vivo analyses indicated that chitodisaccharide possesses much more effective anti-oxidant activity than glucosamine and low molecular weight chitosan (LMW-CS) (~5 kDa). Notably, to our knowledge, this is the first evidence that chitodisaccharide is the minimal COS fragment required for free radical scavenging.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Kunlun Wang ◽  
Xiuhua Zhao ◽  
Yuangang Zu ◽  
Jialei Li ◽  
Xiaonan Zhang ◽  
...  

Ultrafine resveratrol (u-Res) particles were prepared through the SAS process. The orthogonal method was used to optimize the factors of the SAS process. The size of u-Res reached 0.68 μm under the optimum conditions. The characterization of the u-Res particles was tested by many analysis methods. The chemical structure of Res was unaffected by the SAS process. The degree of crystallinity of the u-Res particles greatly reduced. The purity of the u-Res particles increased from 98.5% to 99.2% during the SAS process. The u-Res particles had greater saturation solubility and dissolution rate than the raw-Res (r-Res) particles. The radical scavenging activity and bioavailability of the u-Res in vivo were 1.9 times of the r-Res.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mohamed Makni ◽  
Raoua Jemai ◽  
Walid Kriaa ◽  
Yassine Chtourou ◽  
Hamadi Fetoui

Natural plant extracts contain a variety of phenolic compounds which are assigned various biological activities. Our work aims to make a quantitative and qualitative characterization of the Zest (ZL) and the Flesh (FL) of lemon (Citrus limon), to valorize the pharmacological uses of lemon, by evaluating in vitro activities (DPPH, free radical scavenging and reducing power). The antibacterial, antifungal, and antiproliferative activities were sought in the ability of Citrus limon extracts to protect DNA and protein. We found that the ZL contains high amounts of phenolics responsible for the important antioxidant properties of the extract. However, the FL is richer in flavonoids than the ZL. The FL extract was also found to be more effective than the ZL in protecting plasmid DNA against the strand breakage induced by hydroxyl radicals. We also concluded that the FL extract exhibited potent antibacterial activity unlike ZL. Analysis by LC/MS-MS identified 6 compounds (Caffeoyl N-Tryptophan, Hydroxycinnamoyl-Oglucoside acid, Vicenin 2, Eriocitrin, Kaempferol-3-O- rutinoside, and Quercetin-3-rutinoside). These preliminary results showed that Citrus limon has antibacterial and antioxidant activity in vitro. It would be interesting to conduct further studies to evaluate the in vivo potential in an animal model.


PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0135961 ◽  
Author(s):  
Ann M. Czyzewski ◽  
Håvard Jenssen ◽  
Christopher D. Fjell ◽  
Matt Waldbrook ◽  
Nathaniel P. Chongsiriwatana ◽  
...  

2004 ◽  
Vol 279 (50) ◽  
pp. 52346-52352 ◽  
Author(s):  
Wangrong Yang ◽  
Ian F. Moore ◽  
Kalinka P. Koteva ◽  
David C. Bareich ◽  
Donald W. Hughes ◽  
...  

The tetracycline antibiotics block microbial translation and constitute an important group of antimicrobial agents that find broad clinical utility. Resistance to this class of antibiotics is primarily the result of active efflux or ribosomal protection; however, a novel mechanism of resistance has been reported to be oxygen-dependent destruction of the drugs catalyzed by the enzyme TetX. Paradoxically, thetetXgenes have been identified on transposable elements found in anaerobic bacteria of the genusBacteroides. Overexpression of recombinant TetX inEscherichia colifollowed by protein purification revealed a stoichiometric complex with flavin adenine dinucleotide. Reconstitution ofin vitroenzyme activity demonstrated a broad tetracycline antibiotic spectrum and a requirement for molecular oxygen and NADPH in antibiotic degradation. The tetracycline products of TetX activity were unstable at neutral pH, but mass spectral and NMR characterization under acidic conditions supported initial monohydroxylation at position 11a followed by intramolecular cyclization and non-enzymatic breakdown to other undefined products. TetX is therefore a FAD-dependent monooxygenase. The enzyme not only catalyzed efficient degradation of a broad range of tetracycline analogues but also conferred resistance to these antibioticsin vivo. This is the first molecular characterization of an antibiotic-inactivating monooxygenase, the origins of which may lie in environmental bacteria.


2021 ◽  
Vol 8 (1) ◽  
pp. 5-10
Author(s):  
Maryam Alizadeh ◽  
Ashraf Kariminik ◽  
Ali Akbari

Background: The antimicrobial resistance of pathogenic bacteria has emerged as a major health problem in recent years. Extensive research has been conducted to find new antimicrobial agents. Objectives: The aim of this study was to examine the antibacterial activities of benzohydrazide derivatives. Methods: Manganese hydrogen sulfate choline chloride was applied in a simple method for synthesizing benzohydrazide derivatives. Antibacterial activities of the derivatives were assessed against Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Bacillus subtilis, diphtheroids, Salmonella enterica, Serratia marcescens, Pseudomonas aeruginosa, and Klebsiella pneumoniae. The structure of the synthesized compounds was determined employing 1 H/13C NMR and Fourier-transform infrared (FT-IR) spectroscopy. The reactions were carried out in choline chloride dissolved in water at room temperature. Results: The results of this study showed that benzohydrazide derivatives had very desired antibacterial activities against the assessed bacteria. Conclusions: Further investigations are required to assess the safety and efficacy of benzohydrazide derivatives as antibacterial agents in vivo and in vitro.


2018 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohamed W. Attwa ◽  
Adnan A. Kadi ◽  
Hany W. Darwish ◽  
Sawsan M. Amer ◽  
Nasser S. Al-shakliah

Author(s):  
Nurgozhin T. ◽  
Sergazy S. H. ◽  
Adilgozhina G. ◽  
Gulyayev A. ◽  
Shulgau Z. ◽  
...  

Objective:This study investigates the hepatoprotective effect and the antioxidant role of polyphenol concentrate in the experimental model of carbon tetrachloride (CCl4) induced toxicity. Methods: Antioxidant activity of Cabernet Sauvignon grape polyphenol were evaluated by radical scavenging of 1,1-diphenyl-2-picryl hydrazyl radical (DPPH), 2,2’-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS.+). In addition, the effects of polyphenol concentrate on the survival of Wistar rats in the toxicity model, was also investigated. The polyphenol concentrate was administered for 5 five days prior to injection of carbon tetrachloride in a sub-lethal dose of 300 mg/kg of animal body weight in order to perform histological examinations of the liver and kidney, and detect the levels of AST, ALT and bilirubin. Results: Administration of polyphenol concentrate increased animal survival in the experimental model. Moreover, the intragastric administration of polyphenol concentrate prior to the initiation of the experimental model of toxicity, which was caused by a sub-lethal CCl4 dose, reduced morphological injuries in the liver and kidney, decreased the AST and ALT levels of the blood serum. Discussion and conclusion: Our data demonstrate that polyphenol concentrate possesses an antioxidant potential both in vitro and in vivo by reducing antioxidant stress that was caused by CCl4 administration into rats.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Sign in / Sign up

Export Citation Format

Share Document