scholarly journals Umuhengerin Neuroprotective Effects in Streptozotocin-Induced Alzheimer’s Disease Mouse Model via Targeting Nrf2 and NF-Kβ Signaling Cascades

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2011
Author(s):  
Alaa Sirwi ◽  
Nesrine S. El Sayed ◽  
Hossam M. Abdallah ◽  
Sabrin R. M. Ibrahim ◽  
Gamal A. Mohamed ◽  
...  

Alzheimer’s disease (AD) is the most common type of dementia and is characterized by advanced cognitive deterioration, deposition of Aβ (amyloid-beta), and the formation of neurofibrillary tangles. Administration of streptozotocin (STZ) via the intracerebroventricular (ICV) route is a reliable model resembling sporadic AD (SAD) associated neuropathological changes. The present study was undertaken to explore the neuroprotective effects of the methoxy flavonoid, umuhengerin, in an STZ-induced SAD mouse model as a potential therapy for AD. Mice were injected once with STZ (3 mg/kg, ICV), followed by daily administration of umuhengerin (orally, 30 mg/kg) or the positive control donepezil (orally, 2.5 mg/kg) for 21 days. The pharmacological activity of umuhengerin was assessed through estimation of oxidative stress and inflammatory markers via mouse ELISA kits, Western blot analysis, and brain histopathological examination. Morris water maze test was also conducted to investigate umuhengerin-induced cognitive enhancement. The results showed that umuhengerin attenuated STZ-produced neuroinflammation and oxidative stress with a notable rise in the expression of Nrf2 (nuclear factor erythroid 2-related factor 2). In contrast, it downregulated Keap-1 (Kelch-like ECH associated protein 1), as well as elevated brain contents of GSH (reduced glutathione) and HO-1 (heme oxygenase-1). STZ-injected animals receiving umuhengerin showed marked downregulation of the nuclear factor kappa beta (NF-Kβp65) and noticeable increment in the expression of its inhibitor kappa beta alpha protein (IKβα), as well as prominent reduction in malondialdehyde (MDA), H2O2 (hydrogen peroxide), and TNF-α (tumor-necrosis factor-alpha) contents. Β-secretase protein expression and acetylcholinesterase (AchE) activity were also diminished upon umuhengerin injection in the STZ group, leading to decreased Aβ formation and cognitive improvement, respectively. In conclusion, umuhengerin neuroprotective effects were comparable to the standard drug donepezil; thus, it could be an alternative approach for AD management.

Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3942
Author(s):  
Ji Hyun Kim ◽  
Hui Wen Meng ◽  
Mei Tong He ◽  
Ji Myung Choi ◽  
Dongjun Lee ◽  
...  

In the present study, we investigated the cognitive improvement effects and its mechanisms of krill oil (KO) in Aβ25–35-induced Alzheimer’s disease (AD) mouse model. The Aβ25–35-injected AD mouse showed memory and cognitive impairment in the behavior tests. However, the administration of KO improved novel object recognition ability and passive avoidance ability compared with Aβ25–35-injected control mice in behavior tests. In addition, KO-administered mice showed shorter latency to find the hidden platform in a Morris water maze test, indicating that KO improved learning and memory abilities. To evaluate the cognitive improvement mechanisms of KO, we measured the oxidative stress-related biomarkers and apoptosis-related protein expressions in the brain. The administration of KO inhibited oxidative stress-related biomarkers such as reactive oxygen species, malondialdehyde, and nitric oxide compared with AD control mice induced by Aβ25–35. In addition, KO-administered mice showed down-regulation of Bax/Bcl-2 ratio in the brain. Therefore, this study indicated that KO-administered mice improved cognitive function against Aβ25–35 by attenuations of neuronal oxidative stress and neuronal apoptosis. It suggests that KO might be a potential agent for prevention and treatment of AD.


2020 ◽  
Author(s):  
Yan Wang ◽  
Meiling Lian ◽  
Jing Zhou ◽  
shengzhou wu

Abstract Background Oxidative stress critically underlies the neurodegenerative pathogenesis of Alzheimer's disease (AD). Depletion of Dicer1, an endoribonuclease central to microRNA maturation, also leads to neurodegeneration. We therefore hypothesized that altered Dicer1 expression may play a role in AD. Results Using immunoblotting and quantitative real-time PCR, we found that Dicer1 protein and mRNA levels were reduced in the hippocampi of animals of the AD mouse model APPswe/PSEN1dE9 compared with littermate controls. SiRNA-meditated Dicer1 knockdown induced oxidative stress, reduced mitochondrial intermembrane potential, and increased apoptosis in cultured neurons. Aβ42 exposure decreased Dicer1 and also down-regulated the oxidative stress–induced transcriptional regulator nuclear factor erythroid 2-related factor 2 (Nrf2). Conversely, Nrf2 overexpression increased Dicer1 mRNA and protein levels and reverted the Aβ42-induced Dicer1 reduction. To further investigate Dicer1 regulation, we cloned Dicer1 promoter variants harboring the Nrf2-binding site, the antioxidant response elements (ARE), into a luciferase reporter and found that simultaneous transfection of Nrf2-expressing plasmid increased luciferase expression from these promoter constructs. ChIP assays indicated that Nrf2 directly interacted with the ARE motifs in the Dicer1 promoter. Furthermore, Dicer1 overexpression in cultured neurons reverted Aβ42-induced neurite deficits. Of note, injection of Dicer1-expressing adenovirus into the hippocampus of the AD mice significantly improved spatial learning. Conclusions These findings indicate that Dicer1 expression is reduced in the AD brain and that chronic Aβ exposure decreases Dicer1 levels in neurons via Nrf2–ARE signaling. Our results uncover a significant role for Dicer1 in AD and highlight that Dicer1 expression responds to oxidative stress in the brain.


2015 ◽  
Vol 12 (9) ◽  
pp. 860-869 ◽  
Author(s):  
Yu Zhang ◽  
Furong Wang ◽  
Xianwen Luo ◽  
Li Wang ◽  
Peng Sun ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jing Jiang ◽  
Gang Liu ◽  
Suhua Shi ◽  
Zhigang Li

Objectives. To compare musical electroacupuncture and electroacupuncture in a mouse model of Alzheimer’s disease.Methods. In this study, 7.5-month-old male senescence-accelerated mouse prone 8 (SAMP8) mice were used as an Alzheimer’s disease animal model. In the normal control paradigm, 7.5-month-old male SAMR1 mice were used as the blank control group (N group). After 15 days of treatment, using Morris water maze test, micro-PET, and immunohistochemistry, the differences among the musical electroacupuncture (MEA), electroacupuncture (EA), Alzheimer’s disease (AD), and normal (N) groups were assessed.Results. The Morris water maze test, micro-PET, and immunohistochemistry revealed that MEA and EA therapies could improve spatial learning and memory ability, glucose metabolism level in the brain, and Aβamyloid content in the frontal lobe, compared with the AD group (P<0.05). Moreover, MEA therapy performed better than EA treatment in decreasing amyloid-beta levels in the frontal lobe of mice with AD.Conclusion. MEA therapy may be superior to EA in treating Alzheimer’s disease as demonstrated in SAMP8 mice.


2019 ◽  
Vol 109 ◽  
pp. 107-117 ◽  
Author(s):  
Franciele Martini ◽  
Suzan Gonçalves Rosa ◽  
Isabella Pregardier Klann ◽  
Bruna Cruz Weber Fulco ◽  
Fabiano Barbosa Carvalho ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Peng Ren ◽  
Jingwei Chen ◽  
Bingxuan Li ◽  
Mengzhou Zhang ◽  
Bei Yang ◽  
...  

Introduction. Alzheimer’s disease (AD), the most common neurodegenerative disorder, is characterized by the accumulation of amyloid-β (Aβ) peptide and hyperphosphorylated tau protein. Accumulating evidence has revealed that the slow progressive deterioration of AD is associated with oxidative stress and chronic inflammation in the brain. Nuclear factor erythroid 2- (NF-E2-) related factor 2 (Nrf2), which acts through the Nrf2/ARE pathway, is a key regulator of the antioxidant and anti-inflammatory response. Although recent data show a link between Nrf2 and AD-related cognitive decline, the mechanism is still unknown. Thus, we explored how Nrf2 protects brain cells against the oxidative stress and inflammation of AD in a mouse model of AD (APP/PS1 transgenic (AT) mice) with genetic removal of Nrf2. Methods. The spatial learning and memory abilities of 12-month-old transgenic mice were evaluated using a Morris water maze test. Hippocampal levels of Nrf2, Aβ, and p-tauS404 and of astrocytes and microglia were determined by immunostaining. Inflammatory cytokines were determined by ELISA and quantitative real-time polymerase chain reaction (qRT-PCR). Oxidative stress was measured by 8-hydroxydeoxyguanosine immunohistochemistry, and the antioxidant response was determined by qRT-PCR. Results. The spatial learning and memory abilities of AT mice were impaired after Nrf2 deletion. Aβ and p-tauS404 accumulation was increased in the hippocampus of AT/Nrf2-KO mice. Astroglial and microglial activation was exacerbated, followed by upregulation of the proinflammatory cytokines IL-1β, IL-6, and TNF-α. Conclusion. Our present results show that Nrf2 deficiency aggravates AD-like pathology in AT mice. This phenotype was associated with increased levels of oxidative and proinflammatory markers, which suggests that the Nrf2 pathway may be a promising therapeutic target for AD.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Chunyue Wang ◽  
Xueying Cai ◽  
Ruochen Wang ◽  
Siyu Zhai ◽  
Yongfeng Zhang ◽  
...  

Abstract Background Endoplasmic reticulum (ER) stress is involved in the progression of Alzheimer’s disease (AD). Verbascoside (VB), an active phenylethanoid glycoside that was first isolated from Verbascum sinuatum (the wavyleaf mullein), possesses anti-inflammatory, antioxidative, and anti-apoptotic effects. The purpose of this study was to elucidate the beneficial effects of VB in amyloid β (Aβ)1–42-damaged human glioma (U251) cells and in APPswe/PSEN1dE9 transgenic (APP/PS1) mice. Methods U251 cells were co-incubated with 10 μM of Aβ1-42 and treated with VB. The protective effects of VB were investigated by using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide assay, flow cytometry, fluorescence staining, and transmission electron microscopy. APP/PS1 transgenic mice were treated for 6 weeks with VB. Learning and memory were evaluated using a Morris water maze test. Immunohistochemistry, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling, thioflavin-S staining, and proteomics analysis were performed to study the potential neuroprotective mechanism. Enzyme-linked immunosorbent assays and western blot were performed to analyze altered protein levels of brain lysates in APP/PS1 mice and/or Aβ1-42-damaged U251 cells. Results In Aβ1-42-damaged U251 cells, VB significantly improved cell viability, inhibited apoptosis, reduced calcium accumulation and the intracellular concentrations of reactive oxygen species, and improved the morphology of mitochondria and ER. In APP/PS1 mice, 6-week administration of VB significantly improved memory and cognition. VB inhibited apoptosis, reduced the deposition of Aβ, reduced the formation of neurofibrillary tangles formed by hyperphosphorylated tau protein, and downregulated the expression levels of 4-hydroxynonenal and mesencephalic astrocyte-derived neurotrophic factor in the brains of APP/PS1 mice. Proteomics analysis of mouse hippocampus suggested that the neuroprotective effect of VB may be related to the reduction of ER stress. This was indicated by the fact that VB inhibited the three branches of the unfolded protein response, thereby attenuating ER stress and preventing apoptosis. Conclusions The results confirmed that VB possesses significant neuroprotective effects, which are related to the reduction of ER stress. These findings support the status of VB as a potentially effective treatment for AD and warrant further research.


2019 ◽  
Vol 20 (3) ◽  
pp. 708 ◽  
Author(s):  
Roberto Mattioli ◽  
Antonio Francioso ◽  
Maria d’Erme ◽  
Maurizio Trovato ◽  
Patrizia Mancini ◽  
...  

Alzheimer’s disease (AD) is the most common neurodegenerative disorder and the primary form of dementia in the elderly. One of the main features of AD is the increase in amyloid-beta (Aβ) peptide production and aggregation, leading to oxidative stress, neuroinflammation and neurodegeneration. Polyphenols are well known for their antioxidant, anti-inflammatory and neuroprotective effects and have been proposed as possible therapeutic agents against AD. Here, we investigated the effects of a polyphenolic extract of Arabidopsis thaliana (a plant belonging to the Brassicaceae family) on inflammatory response induced by Aβ. BV2 murine microglia cells treated with both Aβ25–35 peptide and extract showed a lower pro-inflammatory (IL-6, IL-1β, TNF-α) and a higher anti-inflammatory (IL-4, IL-10, IL-13) cytokine production compared to cells treated with Aβ only. The activation of the Nrf2-antioxidant response element signaling pathway in treated cells resulted in the upregulation of heme oxygenase-1 mRNA and in an increase of NAD(P)H:quinone oxidoreductase 1 activity. To establish whether the extract is also effective against Aβ-induced neurotoxicity in vivo, we evaluated its effect on the impaired climbing ability of AD Drosophila flies expressing human Aβ1–42. Arabidopsis extract significantly restored the locomotor activity of these flies, thus confirming its neuroprotective effects also in vivo. These results point to a protective effect of the Arabidopsis extract in AD, and prompt its use as a model in studying the impact of complex mixtures derived from plant-based food on neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document