scholarly journals Antimicrobial and Antibiofilm Activity against Staphylococcus aureus of Opuntia ficus-indica (L.) Mill. Cladode Polyphenolic Extracts

Antioxidants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 117 ◽  
Author(s):  
Federica Blando ◽  
Rossella Russo ◽  
Carmine Negro ◽  
Luigi De Bellis ◽  
Stefania Frassinetti

Plant extracts are a rich source of natural compounds with antimicrobial properties, which are able to prevent, at some extent, the growth of foodborne pathogens. The aim of this study was to investigate the potential of polyphenolic extracts from cladodes of Opuntia ficus-indica (L.) Mill. to inhibit the growth of some enterobacteria and the biofilm formation by Staphylococcus aureus. Opuntia ficus-indica cladodes at two stages of development were analysed for total phenolic content and antioxidant activity by Oxygen Radical Absorbance Capacity (ORAC) and Trolox equivalent antioxidant capacity (TEAC) (in vitro assays) and by cellular antioxidant activity in red blood cells (CAA-RBC) (ex vivo assay). The Liquid Chromatography Time-of-Flight Mass Spectrometry (LC/MS–TOF) analysis of the polyphenolic extracts revealed high levels of piscidic acid, eucomic acid, isorhamnetin derivatives and rutin, particularly in the immature cladode extracts. Opuntia cladodes extracts showed a remarkable antioxidant activity (in vitro and ex vivo), a selective inhibition of the growth of Gram-positive bacteria, and an inhibition of Staphylococcus aureus biofilm formation. Our results suggest and confirm that Opuntia ficus-indica cladode extracts could be employed as functional food, due to the high polyphenolic content and antioxidant capacity, and used as natural additive for food process control and food safety.

2021 ◽  
pp. 82-92
Author(s):  
Srishti Tripathi ◽  
Sunita Mishra

The present study aimed to evaluate the antibacterial, antioxidant activity of pectin extracted from banana peel. Antibacterial activity was investigated against Staphylococcus aureus, Escherichia coli, and Salmonella Enteritidis. The well diffusion method was used to assess the antibacterial effect of the pectin extract on microorganisms. The extract showed maximum activity against Staphylococcus aureus (19.6 mm). The total phenolic content and flavonoid content in the examined extract found to be 3883.6 mgGA/g and 903.03 mg QE/gm on a dry matter basis. Antioxidant activity is analyzed using in vitro Standard spectrophotometer methods. Pectin extract increases DPPH scavenging activity up to 75 µg/ml of concentration. The innovation in food packaging by the use of pectin-based edible coatings is reviewed in this paper. Thereafter, coating of pectin was done in mozzarella cheese and its shelf life was studied at 1, 7,14,21, and 28 days of storage at 5˚C. It was analyzed that pectin coating over mozzarella cheese increases their shelf life from 7 to 21 days. Thus, pectin is a natural polysaccharide that attracts interest for maintaining and improving the quality of cheese. Also, it minimizes the waste that occurs from non-biodegradable packaging materials and helps the environment to be safe. This research was carried out at the laboratory of Food Science analysis Laboratory, Babasaheb Bhimrao Ambedkar University, Lucknow (INDIA) between February 21-April 21.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Weerakoon Achchige Selvi Saroja Weerakoon ◽  
Pathirage Kamal Perera ◽  
Dulani Gunasekera ◽  
Thusharie Sugandhika Suresh

Sudarshanapowder (SP) is one of the most effective Ayurveda powder preparations for paediatric febrile conditions. The objective of the present study was to evaluate thein vitroandin vivoantioxidant potentials of SP. Thein vitroantioxidant effects were evaluated using ABTS radical cation decolourization assay where the TROLOX equivalent antioxidant capacity (TEAC) was determined. Thein vivoantioxidant activity of SP was determined in Wistar rats using the Lipid Peroxidation (LPO) assay in serum. Thein vitroassay was referred to as the TROLOX equivalent antioxidant capacity (TEAC) assay. For thein vivoassay, animals were dosed for 21 consecutive days and blood was drawn to evaluate the MDA level. Thein vitroantioxidant activity of 0.5 μg of SP was equivalent to 14.45 μg of standard TROLOX. The percentage inhibition against the radical formation was50.93±0.53%. The SP showed a statistically significant (p<0.01) decrease in the serum level of thiobarbituric acid-reactive substance in the test rats when compared with the control group. These findings suggest that the SP possesses potent antioxidant activity which may be responsible for some of its reported bioactivities.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4859 ◽  
Author(s):  
Saher Nazir ◽  
Hasnain Jan ◽  
Duangjai Tungmunnithum ◽  
Samantha Drouet ◽  
Muhammad Zia ◽  
...  

Thai basil is a renowned medicinal plant and a rich source of bioactive antioxidant compounds with several health benefits, with actions to prevent of cancer, diabetes and cardiovascular disease. Plant cell and tissue culture technologies can be routinely established as an important, sustainable and low-cost biomass source to produce high-value phytochemicals. The current study aimed at developing an effective protocol to produce Thai basil leaf-derived callus cultures with sustainable and high production of biomass and antioxidants as an alternative of leaves production. MS basal medium with various concentrations of plant growth regulators (PGRs) compatible with nutraceutical applications (i.e., gibberellic acid (GA3) and 6-benzylaminopurine (BAP) either alone or in combination with naphthalene acetic acid (NAA)) were evaluated. Among all tested PGRs, the combination BAP:NAA (5 mg/L:1 mg/L) yields the maximum biomass accumulation (fresh weight (FW): 190 g/L and dry weight (DW): 13.05 g/L) as well as enhanced phenolic (346.08 mg/L) production. HPLC quantification analysis indicated high productions of chicoric acid (35.77 mg/g DW) and rosmarinic acid (7.35 mg/g DW) under optimized callus culture conditions. Antioxidant potential was assessed using both in vitro cell free and in vivo cellular antioxidant assays. Maximum in vitro antioxidant activity DPPH (93.2% of radical scavenging activity) and ABTS (1322 µM Trolox equivalent antioxidant capacity) was also observed for the extracts from callus cultures grown in optimal conditions. In vivo cellular antioxidant activity assay confirmed the effective protection against oxidative stress of the corresponding extract by the maximum inhibition of ROS and RNS production. Compared to commercial leaves, callus extracts showed higher production of chicoric acid and rosmarinic acid associated with higher antioxidant capacity. In addition, this biological system also has a large capacity for continuous biomass production, thus demonstrating its high potential for possible nutraceutical applications.


Antioxidants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 76 ◽  
Author(s):  
Natividad Chaves ◽  
Antonio Santiago ◽  
Juan Carlos Alías

Plants have a large number of bioactive compounds with high antioxidant activity. Studies for the determination of the antioxidant activity of different plant species could contribute to revealing the value of these species as a source of new antioxidant compounds. There is a large variety of in vitro methods to quantify antioxidant activity, and it is important to select the proper method to determine which species have the highest antioxidant activity. The aim of this work was to verify whether different methods show the same sensitivity and/or capacity to discriminate the antioxidant activity of the extract of different plant species. To that end, we selected 12 species with different content of phenolic compounds. Their extracts were analyzed using the following methods: 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, ferric reducing (FRAP) assay, Trolox equivalent antioxidant capacity (ABTS) assay, and reducing power (RP) assay. The four methods selected could quantify the antioxidant capacity of the 12 study species, although there were differences between them. The antioxidant activity values quantified through DPPH and RP were higher than the ones obtained by ABTS and FRAP, and these values varied among species. Thus, the hierarchization or categorization of these species was different depending on the method used. Another difference established between these methods was the sensitivity obtained with each of them. A cluster revealed that RP established the largest number of groups at the shortest distance from the root. Therefore, as it showed the best discrimination of differences and/or similarities between species, RP is considered in this study as the one with the highest sensitivity among the four studied methods. On the other hand, ABTS showed the lowest sensitivity. These results show the importance of selecting the proper antioxidant activity quantification method for establishing a ranking of species based on this parameter.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Javier Marhuenda ◽  
María Dolores Alemán ◽  
Amadeo Gironés-Vilaplana ◽  
Alfonso Pérez ◽  
Gabriel Caravaca ◽  
...  

Polyphenols from berries have proved healthy effects after“in vitro”and“in vivo”studies, such as preventing tumor growing and neurodegenerative and cardiovascular diseases. We compared four different kinds of berries—strawberry, raspberry, blackberry, and blueberry—with the aim to distinguish their phenolic composition, concerning their antioxidant capacity along with their“in vitro”availability. Folin-Ciocalteu method was used for the determination of phenolic compounds, and the antioxidant capacity was measured by ORAC method. Moreover, the determination of anthocyanins was accomplished with an HPLC-DAD. Finally, we carried out an“in vitro”digestion to simulate the gastrointestinal digestion. All berries showed good antioxidant capacity with significant differences, besides high total phenolic compounds. Content of anthocyanins measured by HPLC-DAD varied between the different berries, namely, blackberries and strawberries which showed higher anthocyanin concentration. After“in vitro”digestion, berries showed poor bioavailability of the analysis of anthocyanins (9.9%–31.7%). Availability of total phenolic compounds was higher than anthocyanins (33%–73%). Moreover, strawberries and blackberries presented the less availability grade. Decrease in antioxidant activity measured by ORAC method was about 90% in all berries studied. Therefore, bioavailability of phenolic compounds remains unclear and more correlation between“in vitro”and“in vivo”studies seems to be necessary.


Author(s):  
H. Jayalekshmi ◽  
C. Harikrishnan ◽  
Sajin Sali ◽  
N. Kaushik ◽  
Norin Mary G. Victus ◽  
...  

Objective: The present study attempted to evaluate the anti-biofilm activity of D-amino acids (D-AAs) on Pseudomonas aeruginosa and determine if the combination of D-AAs with tetracycline enhances the anti-biofilm activity in vitro and ex vivo.Methods: Different D-AAs were tested for antibiofilm activity against wild type P. aeruginosa PAO1 and two multidrug resistant P. aeruginosa clinical strains in the presence of sub inhibitory concentrations of tetracycline using crystal violet microtitre plate assay. Results were further validated using in vitro wound dressing and ex vivo porcine skin models followed by cytotoxicity and hemocompatibility studies.Results: D-tryptophan (5 mmol) showed 61 % reduction in biofilm formation of P. aeruginosa. Interestingly combinatorial effect of 5 mmol D-tryptophan and 0.5 minimum inhibitory concentration (MIC) (7.5µg/ml) tetracycline showed 90% reduction in biofilm formation. 5 mmol D-methionine shows 28 % reduction and combination with tetracycline shows 41% reduction in biofilm formation of P. aeruginosa. D-leucine and D-tyrosine alone or in combination with tetracycline did not show significant anti-biofilm activity. D tryptophan-tetracycline combination could reduce 80 % and 77 % reduction in biofilm formation in two multi drug resistant P. aeruginosa clinical strains. D-tryptophan-tetracycline-combination could also reduce 76% and 66% reduction in biofilm formation in wound dressing model and porcine skin explant respectively. The cytotoxicity and hemocompatibility studies did not show significant toxicity when this combination was used.Conclusion: The results established the potential therapeutic application of D-tryptophan alone or in combination with tetracycline for treating biofilm associated clinical problems caused by P. aeruginosa.


Author(s):  
Saher Nazir ◽  
Hasnain Jan ◽  
Duangjai Tungmunnithum ◽  
Samantha Drouet ◽  
Muhammad Zia ◽  
...  

Thai basil is a renowned medicinal plant and a rich source of bioactive antioxidant compounds having several health benefits, with actions to prevent of cancer, diabetes and cardiovascular disease. Plant cell and tissue culture technologies can be routinely established as an important, sustainable and low-cost biomass source for the production of high-value phytochemicals. The current study aimed at developing an effective protocol for the production of Thai basil leaf derived callus cultures with sustainable and high production of biomass and antioxidants as an alternative of leaves production. MS basal medium with various concentrations of plant growth regulators (PGRs) compatible with nutraceutical applications (i.e., gibberellic acid (GA3) and 6-benzylaminopurine (BAP) either alone or in combination with naphthalene acetic acid (NAA)) were evaluated. Among all tested PGRs, the combination BAP:NAA (5 mg/L:1 mg/L) yield maximum biomass accumulation (fresh weight (FW): 190 g/L and dry weight (DW): 13.05 g/L) as well as enhanced phenolic (346.08 mg/L) production. HPLC quantification analysis indicated high productions of chicoric acid (35.77 mg/g DW) and rosmarinic acid (7.35 mg/g DW) under optimized callus culture conditions. Antioxidant potential was assessed using both in vitro cell free and in vivo cellular antioxidant assays. Maximum in vitro antioxidant activity DPPH (93.2 % of radical scavenging activity) and ABTS (1322 &micro;M Trolox equivalent antioxidant capacity) was also observed for the extracts from callus cultures grown on optimal conditions. In vivo cellular antioxidant activity assay confirmed the effective protection against oxidative stress of the corresponding extract by the maximum inhibition of ROS and RNS production. Compared to commercial leaves, callus extracts showed higher production of chicoric acid and rosmarinic acid associated with higher antioxidant capacity. In addition, this biological system also has a large capacity for continuous biomass production, thus demonstrating its high potential for possible nutraceutical applications.


2021 ◽  
Vol 9 (9) ◽  
pp. 1946
Author(s):  
Maja Chochevska ◽  
Elizabeta Jančovska Seniceva ◽  
Sanja Kostadinović Veličkovska ◽  
Galaba Naumova-Leţia ◽  
Valentin Mirčeski ◽  
...  

In the current study, the antioxidant activity of traditional homemade fruit vinegars (HMV) was estimated by measuring the rate of homogeneous redox reaction with 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS•+) using cyclic voltammetry. The antioxidant capacity of six HMV produced using traditional methods and the physicochemical characterization were measured in different vinegar production steps throughout a double spontaneous fermentation process, i.e., without any addition of yeasts or acetic acid bacteria. Their antioxidant capacity was compared with seven fruit commercial vinegars (ComV). Furthermore, the antioxidant capacity was independently measured with the TEAC (Trolox equivalent antioxidant capacity) assay, aiming at correlating with the electrochemical experimental data. Obtained results from both methods, the electrochemical and TEAC assays, interestingly indicated that all HMV have at least 10 times higher antioxidant activity than ComV. Furthermore, the large range of values for antioxidant capacity in samples of commercial vinegars from apples attested the importance of the raw material quality and technological procedures. The positive correlation between total phenolic content and antioxidant capacity measured by the two type of assays indicated that rose hip homemade vinegar (HMV5) has the highest antioxidant capacity. In contrast, the lowest levels of phenolic compounds and antioxidant capacity were found in apple and persimmon homemade vinegars (HMV1 and HMV6, respectively) which indicated that the type of fruit is crucial towards the production of high-quality vinegars. In this way, the use of traditional processes for the production of fruit vinegars proved to be very promising in terms of producing differentiated vinegars and, concomitantly, reaching high levels of health-promoting antioxidant capacities.


2014 ◽  
Vol 58 (1) ◽  
pp. 103-111 ◽  
Author(s):  
María C. Ciappini ◽  
Fernando S. Stoppani

Abstract Polyphenolic compounds reportedly produce physiological effects that are beneficial to health. Bee products are particularly rich in polyphenolic compounds. We determined the antioxidant capacity and the phenolic and flavonoid compounds content of 81 samples of honey. We used the Folin-Ciocalteu reagent method to evaluate the total phenolic content. The antioxidant activities were evaluated using in vitro scavenging assays of 2,2-diphenyl-1-picrylhydrazyl (DPPH ) and hydroxyl radicals (OH ), Trolox equivalent antioxidant capacity (TEAC ), and ferric-reducing antioxidant capacity (FRAC ). Total phenolic content ranged from 40.3 to 193.0 mg gallic acid equivalents (GAE )/100 g; the flavonoid content varied from 1.4 to 7.5 mg quercetin equivalents (QE)/100 g. Eucalyptus honeys exhibited significantly higher phenolic content and free radical-scavenging activity than clover honey samples (p<0.05 for all). Principal component analysis explained 73% of the differences observed in antiradical activity with respect to floral origin. Total phenolic content may be more useful than the radical-scavenging assay for detecting antioxidant capacity in honey; it also represents the variable that most appropriately discriminated among these honeys.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Esteban Villamil-Galindo ◽  
Franco Van de Velde ◽  
Andrea M. Piagentini

AbstractThe post-harvest processing of strawberries generates considerable amounts of by-products that consist of the inedible parts of the fruit (sepal, calyx, stem, and non-marketable portion of the fruit), which is an environmental problem for local producers and industries. This study aimed to revalue these kinds of tissues through identifying and quantifying the genotype influence on the total phenolic content, phenolic profile, and the antioxidant activity of the by-products from three strawberry cultivars: ‘Festival’ (FE), ‘San Andreas ‘ (SA), and ‘Camino Real’ (CR). The total phenolic content was determined by the Folin–Ciocalteu method, in-vitro antioxidant activity by the DPPH* radical scavenging method and the phenolic profile by PAD–HPLC. The different genotypes showed significant differences (p < 0.05) in total phenolic content (TPC), FE being the one with the highest TPC (14.97 g of gallic acid equivalents < GAE > /Kg of by-product < R >), followed by SA and CR cultivars. The antioxidant capacity of the SA and FE tissues were similar (p > 0.05) and higher (15.1–16.3 mmol Trolox equivalents < TE > /Kg R) than CR. Eight main phenolic compounds were identified and quantified on the three cultivars. Agrimoniin was the principal polyphenol (0.38–1.56 g/Kg R), and the cultivar FE had the highest concentration. This compound showed the highest correlation coefficient with the antioxidant capacity (R2 0.87; p < 0.001). This study highlighted the impact of the multi-cultivar systems in strawberry production on the bioactive potential and the diversity of secondary metabolites obtained from strawberry agro-industrial by-products at a low cost.


Sign in / Sign up

Export Citation Format

Share Document