scholarly journals The Impact of Acetyl-CoA and Aspartate Shortages on the N-Acetylaspartate Level in Different Models of Cholinergic Neurons

Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 522 ◽  
Author(s):  
Marlena Zyśk ◽  
Monika Sakowicz-Burkiewicz ◽  
Piotr Pikul ◽  
Robert Kowalski ◽  
Anna Michno ◽  
...  

N-acetylaspartate is produced by neuronal aspartate N-acetyltransferase (NAT8L) from acetyl-CoA and aspartate. In cholinergic neurons, acetyl-CoA is also utilized in the mitochondrial tricarboxylic acid cycle and in acetylcholine production pathways. While aspartate has to be shared with the malate–aspartate shuttle, another mitochondrial machinery together with the tricarboxylic acid cycle supports the electron transport chain turnover. The main goal of this study was to establish the impact of toxic conditions on N-acetylaspartate production. SN56 cholinergic cells were exposed to either Zn2+ overload or Ca2+ homeostasis dysregulation and male adult Wistar rats’ brains were studied after 2 weeks of challenge with streptozotocin-induced hyperglycemia or daily theophylline treatment. Our results allow us to hypothesize that the cholinergic neurons from brain septum prioritized the acetylcholine over N-acetylaspartate production. This report provides the first direct evidence for Zn2+-dependent suppression of N-acetylaspartate synthesis leading to mitochondrial acetyl-CoA and aspartate shortages. Furthermore, Zn2+ is a direct concentration-dependent inhibitor of NAT8L activity, while Zn2+-triggered oxidative stress is unlikely to be significant in such suppression.

1996 ◽  
Vol 271 (4) ◽  
pp. E788-E799 ◽  
Author(s):  
F. M. Jeffrey ◽  
C. J. Storey ◽  
A. D. Sherry ◽  
C. R. Malloy

A previous model using 13C nuclear magnetic resonance isotopomer analysis provided for direct measurement of the oxidation of 13C-enriched substrates in the tricarboxylic acid cycle and/or their entry via anaplerotic pathways. This model did not allow for recycling of labeled metabolites from tricarboxylic acid cycle intermediates into the acetyl-CoA pool. An extension of this model is now presented that incorporates carbon flow from oxaloacetate or malate to acetyl-CoA. This model was examined using propionate metabolism in the heart, in which previous observations indicated that all of the propionate consumed was oxidized to CO2 and water. Application of the new isotopomer model shows that 2 mM [3-13C]propionate entered the tricarboxylic acid cycle as succinyl-CoA (an anaplerotic pathway) at a rate equal to 52% of tricarboxylic acid cycle turnover and that all of this carbon entered the acetyl-CoA pool and was oxidized. This was verified using standard biochemical analysis; from the rate (mumol.min-1.g dry wt-1) of propionate uptake (4.0 +/- 0.7), the estimated oxygen consumption (24.8 +/- 5) matched that experimentally determined (24.4 +/- 3).


1993 ◽  
Vol 264 (6) ◽  
pp. C1594-C1599 ◽  
Author(s):  
J. E. Albina ◽  
B. Mastrofrancesco

Nitric oxide (NO) is a product of L-arginine metabolism that suppresses cellular oxidative metabolism through the inhibition of tricarboxylic acid cycle and electron transport chain enzymes. The impact of NO synthase (NOS) activity on specific pathways of glucose metabolism in freshly harvested and overnight-cultured rat resident peritoneal macrophages, at rest and after stimulation with zymosan, was investigated using radiolabeled glucose. NOS activity was modulated through the L-arginine concentration in culture media and the use of its specific inhibitor, NG-monomethyl-L-arginine, and quantitated using radiolabeled L-arginine. Results demonstrated that NOS activity was associated with increased glucose disappearance, glycolysis, and hexose monophosphate shunt activity and, in line with the known inhibition of oxidative metabolism associated with the production of NO, with a decrease in the flux of glucose and butyrate carbon through the tricarboxylic acid cycle. In addition, the relative increase in glucose utilization that follows zymosan stimulation was enhanced by treatments that suppressed NOS activity. These results demonstrate that the characteristics of glucose metabolism by macrophages are, to a significant extent, determined by products of NOS.


2002 ◽  
Vol 76 (1) ◽  
pp. 31-36 ◽  
Author(s):  
C. Kepron ◽  
M. Novak ◽  
B.J. Blackburn

AbstractCarbon-13 nuclear magnetic resonance (NMR) spectroscopy was employed to investigate alterations in hepatic carbohydrate metabolism inMeriones unguiculatusinfected withEchinococcus multilocularis. Following portal vein injections of an equimolar mixture of ]#x005B;1,2-13C2]acetate and [3-13C]lactate, perchloric acid extracts of the livers were prepared and NMR spectra obtained. Isotopomer analysis using glutamate resonances in these spectra showed that the relative contributions of endogenous and exogenous substrates to the acetyl-CoA entering the tricarboxylic acid cycle differed significantly between infected and control groups. The mole fraction of acetyl-CoA that was derived from endogenous, unlabelled sources (FU) was 0.50±0.10 in controls compared to 0.34±0.04 in infected animals. However, the fraction of acetyl-CoA derived from [3-13C]lactate (FLL) was larger in livers of infected animals than those from controls with values of 0.27±0.04 and 0.18±0.04, respectively. Similarly, the fraction of acetyl-CoA derived from [1,2-13C2]acetate (FLA) was larger in livers of infected animals compared to those in controls; the fractions were 0.38±0.01 and 0.32±0.07, respectively. The ratio of FLA:FLLwas significantly smaller in the infected group with a value of 1.42±0.18 compared to 1.74±0.09 for the controls. These results indicate that alveolar hydatid disease has a pronounced effect on the partitioning of substrates within the pathways of carbohydrate metabolism in the host liver.


1994 ◽  
Vol 266 (6) ◽  
pp. E1012-E1022 ◽  
Author(s):  
J. A. Vogt ◽  
A. J. Fischman ◽  
M. Kempf ◽  
Y. M. Yu ◽  
R. G. Tompkins ◽  
...  

A generalized steady-state model was developed for determining tricarboxylic acid cycle fractional fluxes from 13C nuclear magnetic resonance (NMR) data. The model relates the measured mole fractions of [13C]glutamate isotopomers to the fractional fluxes and predicted mole fractions of isotopomers of oxaloacetate (OAA) and acetyl-CoA. This model includes cycling between OAA and fumarate. Fractional fluxes are determined by fitting the model equations to NMR parameters by use of nonlinear least squares. Although only fractional fluxes can be determined from 13C-NMR data, when they are combined with mass spectroscopic measurements, absolute values can be derived. A specific metabolic system represented by published 13C-NMR data from extracts of hearts perfused with [13C]acetate, [13C]pyruvate (PYR), and [13C]acetate plus [13C]PYR was used to test the model. The intensities of predicted 13C-NMR splitting patterns were compared with observed values, and there was excellent agreement between observed and predicted signal intensities. With this model, important physiological parameters, including the OAA-derived fraction of inflow to PYR, PYR-derived fraction of inflow to acetyl-CoA, citrate-derived fraction of inflow to OAA, and PYR-derived fraction of inflow to OAA, can be determined.


Biochemistry ◽  
1993 ◽  
Vol 32 (45) ◽  
pp. 12240-12244 ◽  
Author(s):  
John G. Jones ◽  
A. Dean Sherry ◽  
F. Mark H. Jeffrey ◽  
Charles J. Storey ◽  
Craig R. Malloy

1977 ◽  
Vol 164 (2) ◽  
pp. 349-355 ◽  
Author(s):  
G Read ◽  
B Crabtree ◽  
G H Smith

1. The activities of 2-oxoglutarate dehydrogenase (EC 1.2.4.2) were measured in hearts and mammary glands of rats, mice, rabbits, guinea pigs, cows, sheep, goats and in the flight muscles of several Hymenoptera. 2. The activity of 2-oxoglutarate dehydrogenase was similar to the maximum flux through the tricarboxylic acid cycle in vivo. Therefore measuring the activity of this enzyme may provide a simple method for estimating the maximum flux through the cycle for comparative investigations. 3. The activities of pyruvate dehydrogenase (EC 1.2.4.1) in mammalian hearts were similar to those of 2-oxoglutarate dehydrogenase, suggesting that in these tissues the tricarboxylic acid cycle can be supplied (under some conditions) by acetyl-CoA derived from pyruvate alone. 4. In the lactating mammary glands of the rat and mouse, the activities of pyruvate dehydrogenase exceeded those of 2-oxoglutarate dehydrogenase, reflecting a flux of pyruvate to acetyl-CoA for fatty acid synthesis in addition to that of oxidation via the tricarboxylic acid cycle. In ruminant mammary glands the activities of pyruvate dehydrogenase were similar to those of 2-oxoglutarate dehydrogenase, reflecting the absence of a significant flux of pyruvate to fatty acids in these tissues.


2019 ◽  
Vol 20 (22) ◽  
pp. 5774 ◽  
Author(s):  
Giacomo Lazzarino ◽  
Angela Maria Amorini ◽  
Stefano Signoretti ◽  
Giuseppe Musumeci ◽  
Giuseppe Lazzarino ◽  
...  

Using a closed-head impact acceleration model of mild or severe traumatic brain injury (mTBI or sTBI, respectively) in rats, we evaluated the effects of graded head impacts on the gene and protein expressions of pyruvate dehydrogenase (PDH), as well as major enzymes of mitochondrial tricarboxylic acid cycle (TCA). TBI was induced in anaesthetized rats by dropping 450 g from 1 (mTBI) or 2 m height (sTBI). After 6 h, 12 h, 24 h, 48 h, and 120 h gene expressions of enzymes and subunits of PDH. PDH kinases and phosphatases (PDK1-4 and PDP1-2, respectively), citrate synthase (CS), isocitrate dehydrogenase (IDH), oxoglutarate dehydrogenase (OGDH), succinate dehydrogenase (SDH), succinyl-CoA synthase (SUCLG), and malate dehydrogenase (MDH) were determined in whole brain extracts (n = 6 rats at each time for both TBI levels). In the same samples, the high performance liquid chromatographic (HPLC) determination of acetyl-coenzyme A (acetyl-CoA) and free coenzyme A (CoA-SH) was performed. Sham-operated animals (n = 6) were used as controls. After mTBI, the results indicated a general transient decrease, followed by significant increases, in PDH and TCA gene expressions. Conversely, permanent PDH and TCA downregulation occurred following sTBI. The inhibitory conditions of PDH (caused by PDP1-2 downregulations and PDK1-4 overexpression) and SDH appeared to operate only after sTBI. This produced almost no change in acetyl-CoA and free CoA-SH following mTBI and a remarkable depletion of both compounds after sTBI. These results again demonstrated temporary or steady mitochondrial malfunctioning, causing minimal or profound modifications to energy-related metabolites, following mTBI or sTBI, respectively. Additionally, PDH and SDH appeared to be highly sensitive to traumatic insults and are deeply involved in mitochondrial-related energy metabolism imbalance.


1970 ◽  
Vol 118 (3) ◽  
pp. 451-455 ◽  
Author(s):  
S.-C. Cheng ◽  
R. Nakamura

1. The pattern of metabolism of 14C-labelled substrates in the lobster nerve suggested a normal tricarboxylic acid cycle with a slow turnover. 2. Acetylcholine was synthesized from [2-14C]acetate, [2-14C]pyruvate and [1,5-14C]citrate, implying the presence of acetate thiokinase, choline acetylase and citrate-cleavage enzyme. 3. [2-14C]Acetate was the best precursor. 4. The formation of acetyl-CoA from citrate was limited, probably by the citrate-cleavage enzyme, although the magnitude of the reversed reactions of the tricarboxylic acid cycle was large when compared with that of the forward reactions. 5. The relative magnitude of the two pathways (acetyl-CoA and carbon dioxide fixation) in pyruvate utilization was nearly equal. 6. The probable presence of metabolic compartments in the lobster nerve is discussed.


Microbiology ◽  
2006 ◽  
Vol 152 (8) ◽  
pp. 2421-2431 ◽  
Author(s):  
C. Bianco ◽  
E. Imperlini ◽  
R. Calogero ◽  
B. Senatore ◽  
P. Pucci ◽  
...  

The physiological changes induced by indoleacetic acid (IAA) treatment were investigated in the totally sequenced Escherichia coli K-12 MG1655. DNA macroarrays were used to measure the mRNA levels for all the 4290 E. coli protein-coding genes; 50 genes (1.1 %) exhibited significantly different expression profiles. In particular, genes involved in the tricarboxylic acid cycle, the glyoxylate shunt and amino acid biosynthesis (leucine, isoleucine, valine and proline) were up-regulated, whereas the fermentative adhE gene was down-regulated. To confirm the indications obtained from the macroarray analysis the activity of 34 enzymes involved in central metabolism was measured; this showed an activation of the tricarboxylic acid cycle and the glyoxylate shunt. The malic enzyme, involved in the production of pyruvate, and pyruvate dehydrogenase, required for the channelling of pyruvate into acetyl-CoA, were also induced in IAA-treated cells. Moreover, it was shown that the enhanced production of acetyl-CoA and the decrease of NADH/NAD+ ratio are connected with the molecular process of the IAA response. The results demonstrate that IAA treatment is a stimulus capable of inducing changes in gene expression, enzyme activity and metabolite level involved in central metabolic pathways in E. coli.


Sign in / Sign up

Export Citation Format

Share Document