scholarly journals Time-Gated Single-Photon Detection in Time-Domain Diffuse Optics: A Review

2020 ◽  
Vol 10 (3) ◽  
pp. 1101 ◽  
Author(s):  
Alberto Dalla Mora ◽  
Laura Di Sieno ◽  
Rebecca Re ◽  
Antonio Pifferi ◽  
Davide Contini

This work reviews physical concepts, technologies and applications of time-domain diffuse optics based on time-gated single-photon detection. This particular photon detection strategy is of the utmost importance in the diffuse optics field as it unleashes the full power of the time-domain approach by maximizing performances in terms of contrast produced by a localized perturbation inside the scattering medium, signal-to-noise ratio, measurement time and dynamic range, penetration depth and spatial resolution. The review covers 15 years of theoretical studies, technological progresses, proof of concepts and design of laboratory systems based on time-gated single-photon detection with also few hints on other fields where the time-gated detection strategy produced and will produce further impact.

Instruments ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 18
Author(s):  
Fabio Acerbi ◽  
Anurag Behera ◽  
Alberto Dalla Mora ◽  
Laura Di Sieno ◽  
Alberto Gola

Silicon photomultipliers (SiPM) are pixelated single-photon detectors combining high sensitivity, good time resolution and high dynamic range. They are emerging in many fields, such as time-domain diffuse optics (TD-DO). This is a promising technique in neurology, oncology, and quality assessment of food, wood, and pharmaceuticals. SiPMs can have very large areas and can significantly increase the sensitivity of TD-DO in tissue investigation. However, such improvement is currently limited by the high detector noise and the worsening of SiPM single-photon time resolution due to the large parasitic capacitances. To overcome such limitation, in this paper, we present two single-photon detection modules, based on 6 × 6 mm2 and 10 × 10 mm2 SiPMs, housed in vacuum-sealed TO packages, cooled to −15 °C and −36 °C, respectively. They integrate front-end amplifiers and temperature controllers, being very useful instruments for TD-DO and other biological and physical applications. The signal extraction from the SiPM was improved. The noise is reduced by more than two orders of magnitude compared to the room temperature level. The full suitability of the proposed detectors for TD-DO measurements is outside the scope of this work, but preliminary tests were performed analyzing the shape and the stability of the Instrument Response Function. The proposed modules are thus fundamental building blocks to push the TD-DO towards deeper investigations inside the body.


2012 ◽  
Vol 246-247 ◽  
pp. 273-278 ◽  
Author(s):  
Hua Lü

In this paper, we experimentally characterize the Inga As/Imp avalanche photodiode (APD), which is working in Geiger mode, so as to choose the single photon detector for quantum communication. Due to the fact that bias of APD tends to be flat after avalanche, we first adopt the methodology of passive quenching to determine dark breakdown voltage. Experiment results indicate that temperature reduction will widen the optimal operating region and increase the optimal multiplication; therefore APD will be more sensitive. Epitaxial APD is the best choice for single-photon detection among the APDs we have tested for its low noise level and high signal-to-noise ratio (SNR). Finally, we design a mixed passive-active quenching integrated circuit with gate control, which is quick with the quenching time of about 25ns and has controllable dead time with minimum of about 60ns.


2009 ◽  
Vol 07 (supp01) ◽  
pp. 263-278
Author(s):  
MILENA D'ANGELO ◽  
AUGUSTO GARUCCIO ◽  
VINCENZO TAMMA

Path-entangled N-photon systems described by NOON states are the main ingredient of many quantum information and quantum imaging protocols. Our analysis aims to lead the way toward the implementation of both NOON-state sources and their applications. To this end, we study the functionality of "real" NOON-state sources by quantifying the effect real experimental apparatuses have on the actual generation of the desired NOON state. In particular, since the conditional generation of NOON states strongly relies on photon counters, we evaluate the dependence of both the reliability and the signal-to-noise ratio of "real" NOON-state sources on detection losses. We find a surprising result: NOON-state sources relying on nondetection are much more reliable than NOON-state sources relying on single-photon detection. Also the comparison of the resources required to implement these two protocols comes out to be in favor of NOON-state sources based on nondetection. A scheme to improve the performances of "real" NOON-state sources based on single-photon detection is also proposed and analyzed.


1987 ◽  
Vol 41 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Judy P. Lee ◽  
Melvin B. Comisarow

A systematic examination of the efficacy of window functions for reducing the spectral skirt of magnitude-mode Fourier transform spectra is reported. The efficacy is examined for the general case of a damped time-domain signal, with specific cases ranging from undamped to essentially completely damped signals. The choice of the optimal window is dependent upon the required dynamic range and the amount of damping in the time-domain data. For a dynamic range of less than 100:1 and moderate damping, the Hamming window is the window of choice. For larger dynamic ranges or greater damping, the 3-term Blackman-Harris window and the Kaiser-Bessel window are the windows of choice. The 3-term Blackman-Harris window is preferred for a dynamic range of 1,000:1 and the Kaiser-Bessel window is preferred for a dynamic range of 10,000:1. The sensitivity (signal-to-noise ratio) reduction for windows is reported for a damping range from zero to essentially complete damping. All windows examined have the same sensitivity reduction within 25%.


2021 ◽  
Vol 50 (1) ◽  
pp. 20211016-20211016
Author(s):  
吴静远 Jingyuan Wu ◽  
刘肇国 Zhaoguo Liu ◽  
张彤 Tong Zhang

Sign in / Sign up

Export Citation Format

Share Document