scholarly journals Performance Analysis of Amplitude Comparison Monopulse Direction-of-Arrival Estimation

2020 ◽  
Vol 10 (4) ◽  
pp. 1246 ◽  
Author(s):  
Do-Jin An ◽  
Joon-Ho Lee

Amplitude-comparison monopulse radar in tracking radar uses the tracking scheme of a monopulse radar to estimate the angle components of a target. The performance of the amplitude comparison monopulse radar under measurement uncertainty is analysed. Measurement noises are modelled as Gaussian random variables. Taylor series expansion is adopted to get analytic expression of the mean square error (MSE). Estimation accuracy, in terms of the MSEs for estimate the direction-of-arrival (DOA) estimation algorithm, is usually obtained from the Monte Carlo simulation, which can be computationally intensive especially for large number of repetitions in the Monte Carlo simulation. To get reliable MSE in the Monte Carlo simulation, the number of repetitions should be very large, which implies that there is a trade-off between reliability of the MSE and computational burden in the Monte Carlo simulation. This paper shows the performance of amplitude comparison monopulse radar by linear approximation of nonlinear equations to estimate the DOA. The performance of amplitude comparison monopulse radar is quantitatively analysed via the MSEs, and the derived expression is validated by comparing the analytic MSEs with the simulation based MSEs. In addition, it is shown in the numerical results that analytically derived MSE is much less computationally intensive in comparison with the Monte Carlo simulation-based MSE, which implies that the proposed scheme in this paper results in drastic reduction in computational complexity for evaluation of the MSE.

2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Eun-Kyung Lee ◽  
Joon-Ho Lee

The performance of the conventional beamforming for angle-of-arrival (AOA) estimation algorithm under measurement uncertainty is analyzed. Gaussian random variables are used for modeling measurement noises. Analytic expression of the mean square error (MSE) is obtained via Taylor series expansion. In traditional performance analysis, estimation accuracy in terms of the MSEs is usually obtained from the Monte Carlo simulation, which is computationally intensive especially for large number of repetitions in the Monte Carlo simulation. For reliable MSE in the Monte Carlo simulation, the number of repetitions should be very large. To circumvent this problem, analytic performance analysis which is less computationally intensive than the Monte Carlo simulation-based performance analysis is proposed in this paper. After some approximations, we derive the closed form expression of the mean square error (MSE) for each incident signal. The validity of the derived expressions is shown by comparing an analytic MSE with an empirical MSEs. The Cramer–Rao bound is also used to further validate the derived analytic expression.


2017 ◽  
Vol 2017 ◽  
pp. 1-28 ◽  
Author(s):  
Yun-Seong Cho ◽  
Jeong-Min Seo ◽  
Joon-Ho Lee

We address the performance analysis of the maximum likelihood (ML) direction-of-arrival (DOA) estimation algorithm in the case of azimuth/elevation estimation of two incident signals using the uniform circular array (UCA). Based on the Taylor series expansion and approximation, we get explicit expressions of the root mean square errors (RMSEs) of the azimuths and elevations. The validity of the derived expressions is shown by comparing the analytic results with the simulation results. The derivation in this paper is further verified by illustrating the consistency of the analytic results with the Cramer-Rao lower bound (CRLB).


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Hongtao Li ◽  
Chaoyu Wang ◽  
Xiaohua Zhu

A novel compressive sensing- (CS-) based direction-of-arrival (DOA) estimation algorithm is proposed to solve the performance degradation of the CS-based DOA estimation in the presence of sensing matrix mismatching. Firstly, a DOA sparse sensing model is set up in the presence of sensing matrix mismatching. Secondly, combining the Dantzig selector (DS) algorithm and least-absolute shrinkage and selection operator (LASSO) algorithm, a CS-based DOA estimation algorithm which performs iterative optimization alternatively on target angle information vector and sensing matrix mismatching error vector is proposed. The simulation result indicates that the proposed algorithm possesses higher angle resolution and estimation accuracy compared with conventional CS-based DOA estimation algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4403
Author(s):  
Ji Woong Paik ◽  
Joon-Ho Lee ◽  
Wooyoung Hong

An enhanced smoothed l0-norm algorithm for the passive phased array system, which uses the covariance matrix of the received signal, is proposed in this paper. The SL0 (smoothed l0-norm) algorithm is a fast compressive-sensing-based DOA (direction-of-arrival) estimation algorithm that uses a single snapshot from the received signal. In the conventional SL0 algorithm, there are limitations in the resolution and the DOA estimation performance, since a single sample is used. If multiple snapshots are used, the conventional SL0 algorithm can improve performance in terms of the DOA estimation. In this paper, a covariance-fitting-based SL0 algorithm is proposed to further reduce the number of optimization variables when using multiple snapshots of the received signal. A cost function and a new null-space projection term of the sparse recovery for the proposed scheme are presented. In order to verify the performance of the proposed algorithm, we present the simulation results and the experimental results based on the measured data.


2021 ◽  
Vol 50 ◽  
pp. 101301
Author(s):  
A.Z. Zheng ◽  
S.J. Bian ◽  
E. Chaudhry ◽  
J. Chang ◽  
H. Haron ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2191
Author(s):  
Huichao Yan ◽  
Ting Chen ◽  
Peng Wang ◽  
Linmei Zhang ◽  
Rong Cheng ◽  
...  

Direction of arrival (DOA) estimation has always been a hot topic for researchers. The complex and changeable environment makes it very challenging to estimate the DOA in a small snapshot and strong noise environment. The direction-of-arrival estimation method based on compressed sensing (CS) is a new method proposed in recent years. It has received widespread attention because it can realize the direction-of-arrival estimation under small snapshots. However, this method will cause serious distortion in a strong noise environment. To solve this problem, this paper proposes a DOA estimation algorithm based on the principle of CS and density-based spatial clustering (DBSCAN). First of all, in order to make the estimation accuracy higher, this paper selects a signal reconstruction strategy based on the basis pursuit de-noising (BPDN). In response to the challenge of the selection of regularization parameters in this strategy, the power spectrum entropy is proposed to characterize the noise intensity of the signal, so as to provide reasonable suggestions for the selection of regularization parameters; Then, this paper finds out that the DOA estimation based on the principle of CS will get a denser estimation near the real angle under the condition of small snapshots through analysis, so it is proposed to use a DBSCAN method to process the above data to obtain the final DOA estimate; Finally, calculate the cluster center value of each cluster, the number of clusters is the number of signal sources, and the cluster center value is the final DOA estimate. The proposed method is applied to the simulation experiment and the micro electro mechanical system (MEMS) vector hydrophone lake test experiment, and they are proved that the proposed method can obtain good results of DOA estimation under the conditions of small snapshots and low signal-to-noise ratio (SNR).


2013 ◽  
Vol 740-742 ◽  
pp. 393-396
Author(s):  
Maxim N. Lubov ◽  
Jörg Pezoldt ◽  
Yuri V. Trushin

The influence of attractive and repulsive impurities on the nucleation process of the SiC clusters on Si(100) surface was investigated. Kinetic Monte Carlo simulations of the SiC clusters growth show that that increase of the impurity concentration (both attractive and repulsive) leads to decrease of the mean cluster size and rise of the nucleation density of the clusters.


2007 ◽  
Vol 129 ◽  
pp. 83-87
Author(s):  
Hua Long Li ◽  
Jong Tae Park ◽  
Jerzy A. Szpunar

Controlling texture and microstructure evolution during annealing processes is very important for optimizing properties of steels. Theories used to explain annealing processes are complicated and always case dependent. An recently developed Monte Carlo simulation based model offers an effective tool for studying annealing process and can be used to verify the arbitrarily defined theories that govern such processes. The computer model takes Orientation Image Microscope (OIM) measurements as an input. The abundant information contained in OIM measurement allows the computer model to incorporate many structural characteristics of polycrystalline materials such as, texture, grain boundary character, grain shape and size, phase composition, chemical composition, stored elastic energy, and the residual stress. The outputs include various texture functions, grain boundary and grain size statistics that can be verified by experimental results. Graphical representation allows us to perform virtual experiments to monitor each step of the structural transformation. An example of applying this simulation to Si steel is given.


Sign in / Sign up

Export Citation Format

Share Document