scholarly journals Carbon Dioxide Uptake by MOC-Based Materials

2020 ◽  
Vol 10 (7) ◽  
pp. 2254 ◽  
Author(s):  
Ondřej Jankovský ◽  
Michal Lojka ◽  
Anna-Marie Lauermannová ◽  
Filip Antončík ◽  
Milena Pavlíková ◽  
...  

In this work, carbon dioxide uptake by magnesium oxychloride cement (MOC) based materials is described. Both thermodynamically stable magnesium oxychloride phases with stoichiometry 3Mg(OH)2∙MgCl2∙8H2O (Phase 3) and 5Mg(OH)2∙MgCl2∙8H2O (Phase 5) were prepared. X-ray diffraction (XRD) measurements were performed to confirm the purity of the studied phases after 7, 50, 100, 150, 200, and 250 days. Due to carbonation, chlorartinite was formed on the surface of the examined samples. The Rietveld analysis was performed to calculate the phase composition and evaluate the kinetics of carbonation. The SEM micrographs of the sample surfaces were compared with those of the bulk to prove XRD results. Both MOC phases exhibited fast mineral carbonation and high maximum theoretical values of CO2 uptake capacity. The materials based on MOC cement can thus find use in applications where a higher concentration of CO2 in the environment is expected (e.g., in flooring systems and wall panels), where they can partially mitigate the harmful effects of CO2 on indoor air quality and contribute to the sustainability of the construction industry by means of reducing the carbon footprints of alternative building materials and reducing CO2 concentrations in the environment overall.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 767 ◽  
Author(s):  
Michal Lojka ◽  
Ondřej Jankovský ◽  
Adéla Jiříčková ◽  
Anna-Marie Lauermannová ◽  
Filip Antončík ◽  
...  

In this paper, magnesium oxychloride cement with stoichiometry 3Mg(OH)2∙MgCl2∙8H2O (MOC 3-1-8) was prepared and characterized. The phase composition and kinetics of formation were studied by X-ray diffraction (XRD) and Rietveld analysis of obtained diffractograms. The chemical composition was analyzed using X-ray fluorescence (XRF) and energy dispersive spectroscopy (EDS). Furthermore, scanning electron microscopy (SEM) was used to study morphology, and Fourier Transform Infrared (FT-IR) spectroscopy was also used for the analysis of the prepared sample. In addition, thermal stability was tested using simultaneous thermal analysis (STA) combined with mass spectroscopy (MS). The obtained data gave evidence of the fast formation of MOC 3-1-8, which started to precipitate rapidly. As the length of the time of ripening increased, the amount of MgO decreased, while the amount of MOC 3-1-8 increased. The fast formation of the MOC 3-1-8 phase at an ambient temperature is important for its application in the production of low-energy construction materials, which corresponds with the challenges of a sustainable building industry.


2020 ◽  
Vol 10 (11) ◽  
pp. 4032
Author(s):  
Anna-Marie Lauermannová ◽  
Michal Lojka ◽  
Filip Antončík ◽  
David Sedmidubský ◽  
Milena Pavlíková ◽  
...  

The search for environmentally sustainable building materials is currently experiencing significant expansion. It is increasingly important to find new materials or reintroduce those that have been set aside to find a good replacement for Portland cement, which is widely used despite being environmentally insufficient and energy-intensive. Magnesium oxybromides, analogues to well-known magnesium oxychloride cements, fit both categories of new and reintroduced materials. In this contribution, two magnesium oxybromide phases were prepared and thoroughly analyzed. The stoichiometries of the prepared phases were 5Mg(OH)2∙MgBr2∙8H2O and 3Mg(OH)2∙MgBr2∙8H2O. The phase analysis was determined using X-ray diffraction. The morphology was analyzed with scanning and transmission electron microscopy. The chemical composition was studied using X-ray fluorescence and energy dispersive spectroscopy. Fourier transform infrared spectroscopy was also used. The thermal stability and the mechanism of the release of gasses linked to the heating process, such as water and hydrobromic acid evaporation, were analyzed using simultaneous thermal analysis combined with mass spectroscopy. The obtained results were compared with the data available for magnesium oxychlorides.


Author(s):  
Malik Šehović ◽  
Lars Robben ◽  
Thorsten M. Gesing

AbstractWe report on the phase transformation and the reaction kinetics of aluminosilicate nitrite-sodalite |Na


2019 ◽  
Vol 944 ◽  
pp. 398-403
Author(s):  
Yong Gui ◽  
Zhi Yuan Liang ◽  
Miao Yu ◽  
Qin Xin Zhao

Corrosion behavior of martensitic heat resisting steel T91 in high-temperature carbon dioxide environment at 500-700 °C was investigated. X-ray diffraction, scanning electron microscopy and glow-discharge optical emission spectrometry were employed to characterize the corrosion products. The results showed that the corrosion kinetics of T91 followed a parabolic law with experimental time. The oxide scale thickness of T91 followed an exponential growth law from 500 °C to 700 °C. Internal carburization was detected underneath the corrosion scale. What’s more, the carburization depth was larger than the corrosion scale. The variations of Cr and C elements distribution were discussed.


2018 ◽  
Vol 20 (3) ◽  
pp. 87-94
Author(s):  
Michal Zgrzebnicki ◽  
Ewa Michalczyszyn ◽  
Rafal J. Wrobel

Abstract Secondary activation of commercial activated carbon (AC) ORGANOSORB 10-CO was carried out at 600, 700 and 800oC with mass ratios of potassium to AC (K/AC) in range 1-3. Crucial samples have shown following CO2 uptakes and SSA - 3.90 mmol/g and 1225 m2/g, 4.54 mmol/g and 1546 m2/g, 4.28 and 1717 m2/g for pristine material and samples obtained at 700oC with K/AC = 2 and at 800oC with K/AC = 3 respectively. Last sample also indicated signifi cant mesopore volume increase in diameter range 2-5 nm, from 0.11 to 0.24 cm3/g. CO2 uptake increase was explained by formation of micropores up to diameter of 0.8 nm, which distribution was established from CO2 sorption using DFT. Surface chemistry of all samples has not changed during modifi cation, what was proven by XPS. Moreover, deeper incorporation of potassium ions into graphite at higher temperatures was observed as confi rmed with EDS, XPS and XRD.


2020 ◽  
Vol 10 (2) ◽  
pp. 646 ◽  
Author(s):  
Miguel Ángel Sanjuán ◽  
Carmen Andrade ◽  
Pedro Mora ◽  
Aniceto Zaragoza

As the cement industry continues to address its role in the climate crisis, Portugal’s cement industry has started to calculate its net CO2 emissions to become an entirely carbon neutral sector. These emissions are calculated by simply subtracting the total CO2 uptake due to mortar and concrete carbonation from the total CO2 that is emitted during the calcination process (clinker production). However, the procedures given in the Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas (GHG) Inventories to report GHG emissions do not contain any element that would grant this calculation method the status of an internationally recognized procedure. Therefore, some climate models are not accurate because they do not account for the carbon dioxide uptake due to concrete and mortar carbonation, as is evidenced in this paper. Climate models have improved since the IPCC’s Fourth Assessment Report (AR4), but they can further improve by implementing carbon dioxide uptake by cement-based materials. In the present paper, a quick and easy method of evaluating net CO2 emissions is utilized (simplified method) along with an advanced method. Portuguese net CO2 emissions of the cement produced from 2005 to 2015 were calculated while taking carbon dioxide uptake during the service-life and end-of-life and secondary usage stages into account. Following the simplified method, 8.7 million tons of carbon dioxide were found to be uptake by mortars and concretes made with Portuguese cement over the ten-year period, in which 37.8 million tons were released due to the calcination process. In addition, an advanced method has been used to estimate the carbon dioxide uptake, which provided only slightly higher results than that of the simplified method (9.1 million tons).


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4388
Author(s):  
Xuebing Zhou ◽  
Ye Zhang ◽  
Xiaoya Zang ◽  
Deqing Liang

Hydrate formation from cyclopentane (CP) and carbon dioxide was measured at 281 K by powder X-ray diffraction (PXRD) and macroscopic methods. The effect of initial pressure and CP mass fraction in liquid phase was analyzed. The results showed that hydrate formation was assumed to start with the nucleation of the mixed CP-CO2 hydrate with small fraction of CO2 followed by a large continuous CO2 adsorption. Initial pressure was found to have a positive correlation with the total CO2 consumptions when the initial pressure was below 2.5 MPa. However, the total CO2 consumptions dropped by over a half as the initial pressure was 3.0 MPa. PXRD revealed that all the hydrate samples formed at different initial pressures were structure II. The CO2 consumptions were assumed to be inhibited by the competitive occupation of 51264 cages between CP and CO2 molecules when the initial pressure was above 2.5 MPa. The CO2 consumptions were also found to be reduced as the CP mass fraction was above 0.25. An excess of CP molecules was not assumed to strengthen the formation of the mixed CP-CO2 hydrates at the initial stage, but increased the thickness of liquid CP film at aqueous brine and hydrate particles, which increased the diffusion resistance of CO2 molecules. Therefore, the suitable initial pressure and the CP mass fraction for the mixed CP-CO2 hydrate formation should be around 2.5 MPa and 0.2, respectively.


2019 ◽  
Vol 9 (20) ◽  
pp. 4314 ◽  
Author(s):  
Satar ◽  
Ahmed ◽  
Yousif ◽  
Ahmed ◽  
Alotibi ◽  
...  

The high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning electron microscopy (FESEM) images showed that the surface morphologies of the synthesized POPs were similar to coral reefs. They had grooved networks, long range periodic macropores, amorphous surfaces, and a high surface area (SBET = 82.71–213.54 m2/g). Most importantly, they had considerable carbon dioxide storage capacity, particularly at high pressure. The carbon dioxide uptake at 323 K and 40 bar for one of the POPs was as high as 1.42 mmol/g (6.00 wt %). The high carbon dioxide uptake capacities of these materials were primarily governed by their geometries. The POP containing a meta-phosphate unit leads to the highest CO2 uptake since such geometry provides a highly distorted and extended surface area network compared to other POPs.


1997 ◽  
Vol 134 (2) ◽  
pp. 319-325 ◽  
Author(s):  
Koji Yamada ◽  
Hiroshi Sera ◽  
Shigeko Sawada ◽  
Hironobu Tada ◽  
Tsutomu Okuda ◽  
...  

1975 ◽  
Vol 20 (2) ◽  
pp. 211-221 ◽  
Author(s):  
Jerome Gavis ◽  
John F. Ferguson

Sign in / Sign up

Export Citation Format

Share Document