scholarly journals Impact of Tea and Coffee Consumption on Cognitive Performance: An fNIRS and EDA Study

2020 ◽  
Vol 10 (7) ◽  
pp. 2390 ◽  
Author(s):  
Amanda Sargent ◽  
Jan Watson ◽  
Yigit Topoglu ◽  
Hongjun Ye ◽  
Rajneesh Suri ◽  
...  

Coffee and tea are two of the most popular beverages in the world and have been consumed for more than a thousand years. They have become an integral part of the day for many consumers and may aid not only increased social interactions but also productivity. However, there is no conclusive evidence of their comparative effect on cognitive ability. This study investigated the impact of tea and coffee products on cognitive performance in typical office work-related tasks using brain, body, and behavioral measures. In a controlled multi-day study, we explored the effects of both traditional and cognition-enhancing hot beverages through task performance and self-reported measures. A total of 120 participants completed three work-related tasks from different cognitive domains and consumed either a traditional or cognition-enhancing hot beverage. During the study, we measured brain activity in the prefrontal cortex using functional near-infrared spectroscopy (fNIRS) as well as arousal from skin conductance through electrodermal activity (EDA) while participants completed cognitive tasks and consumed the beverages. Neural efficiency was used to evaluate cognitive performance in the tasks. Neural efficiency was calculated from a composite score of behavioral efficiency and cognitive effort, and emotional arousal was estimated from EDA activity. Results indicated that for different cognitive domains, the enhanced hot beverages showed improved neural efficiency over that of a traditional hot beverage. This is the first study to assess the impact of both traditional and cognition-enhancing drinks using a multimodal approach for workplace-related assignments.

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 61-LB
Author(s):  
LISA R. LETOURNEAU-FREIBERG ◽  
KIMBERLY L. MEIDENBAUER ◽  
ANNA M. DENSON ◽  
PERSEPHONE TIAN ◽  
KYOUNG WHAN CHOE ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 196
Author(s):  
Sébastien Laurent ◽  
Laurence Paire-Ficout ◽  
Jean-Michel Boucheix ◽  
Stéphane Argon ◽  
Antonio Hidalgo-Muñoz

The question of the possible impact of deafness on temporal processing remains unanswered. Different findings, based on behavioral measures, show contradictory results. The goal of the present study is to analyze the brain activity underlying time estimation by using functional near infrared spectroscopy (fNIRS) techniques, which allow examination of the frontal, central and occipital cortical areas. A total of 37 participants (19 deaf) were recruited. The experimental task involved processing a road scene to determine whether the driver had time to safely execute a driving task, such as overtaking. The road scenes were presented in animated format, or in sequences of 3 static images showing the beginning, mid-point, and end of a situation. The latter presentation required a clocking mechanism to estimate the time between the samples to evaluate vehicle speed. The results show greater frontal region activity in deaf people, which suggests that more cognitive effort is needed to process these scenes. The central region, which is involved in clocking according to several studies, is particularly activated by the static presentation in deaf people during the estimation of time lapses. Exploration of the occipital region yielded no conclusive results. Our results on the frontal and central regions encourage further study of the neural basis of time processing and its links with auditory capacity.


2020 ◽  
Vol 6 ◽  
Author(s):  
John S. Gero ◽  
Julie Milovanovic

This paper presents a framework for studying design thinking. Three paradigmatic approaches are described to measure design cognitive processes: design cognition, design physiology and design neurocognition. Specific tools and methods serve each paradigmatic approach. Design cognition is explored through protocol analysis, black-box experiments, surveys and interviews. Design physiology is measured with eye tracking, electrodermal activity, heart rate and emotion tracking. Design neurocognition is measured using electroencephalography, functional near infrared spectroscopy and functional magnetic resonance imaging. Illustrative examples are presented to describe the types of results each method provides about the characteristics of design thinking, such as design patterns, design reasoning, design creativity, design collaboration, the co-evolution of the problem solution space, or design analysis and evaluation. The triangulation of results from the three paradigmatic approaches to studying design thinking provides a synergistic foundation for the understanding of design cognitive processes. Results from such studies generate a source of feedback to designers, design educators and researchers in design science. New models, new tools and new research questions emerge from the integrated approach proposed and lay down future challenges in studying design thinking.


Author(s):  
Hui Li ◽  
Dandan Wu ◽  
Jinfeng Yang ◽  
Jiutong Luo ◽  
Sha Xie ◽  
...  

This study aims to examine the impact of tablet use on preschoolers’ executive function during the Dimensional Change Card Sort Task (DCCS) task using the functional near-infrared spectroscopy (fNIRS). Altogether 38 Chinese preschoolers (Mage = 5.0 years, SD = 0.69 years, 17 girls) completed the tasks before the COVID-19 lockdown. Eight children never used tablets, while 16 children were diagnosed as the ‘heavy-user'. The results indicated that: (1) the 'Non-user' outperformed the 'Heavy-user' with a significantly higher correct rate in the DCCS task; (2) the two groups differed significantly in the activation of the prefrontal cortex (BA 9): the 'Non-user' pattern is normal and healthy, whereas the 'Heavy-user' pattern is not normal and needs further exploration.


2021 ◽  
Author(s):  
Jiani Li ◽  
MACRINA DIEFFENBACH ◽  
MATTHEW D. LIEBERMAN

Prevalent, automatic, and powerful, emotional experience forms an integral part of human life. Despite numerous studies pointing at the impact of emotion in shaping one’s interpretation of situation and guiding action, emotional experience has not been studied extensively due to its idiosyncratic nature. However, advances in neuroimaging techniques and statistical analysis methods enabled more rigorous investigation of subjective experience, one of which is neural synchrony. Here we sought to examine if neural synchrony in regions within the default mode network, including medial prefrontal cortex (mPFC), bilateral temporoparietal junctions (TPJ) and inferior parietal lobules (IPL), underlies shared emotional experience. A hundred and four participants watched political videos while being scanned by Functional Near-Infrared Spectroscopy (fNIRS) and rated their emotional experience afterwards. Although initial Inter- Subject Correlation Analysis and Inter-Subject Representational Similarity Analysis did not yield significant findings, we addressed limitations of both approaches – loss of dimensionality and unequal comparisons of dyads – by combining them with k-means clustering. This improved version of analysis revealed that subjects who reported more similarly negative, but not positive, emotional experiences exhibited more synchronized neural fluctuations in mPFC. The results suggest that neural synchrony in mPFC may be driven primarily by negative sentiments and serve as a neural signature for subjective emotional experience.


2019 ◽  
Vol 35 (2) ◽  
pp. 131-145
Author(s):  
Grzegorz Kolasa ◽  
Filip Rybakowski

Objectives. Functional near-infrared spectroscopy (fNIRS) is one of the fastest developing neuroimaging modalities. Features, such as non-invasiveness, simplicity of application and resistance to motion artefacts, allow to take measurements and to create scientific experiments imitating real life conditions. In this review, we want to focus on the potential of fNIRS in the fields of psychiatry, neurorehabilitation and physical exercise. Additionally, we present the advantages of fNIRS over other neuroimaging techniques like fMRI, PET and EEG/EMG. We also consider potential directions of development and challenges which emerge in front of the fNIRS society. Literature review. The main application in the discipline of neurorehabilitation is to monitor and to observe the repair mechanism of neurons after brain traumas. The non-invasiveness of infra-red light permits to investigate patients of both adult and child psychiatry. The utility of fNIRS as a diagnostic tool and a predictor is proven. Researchers are looking for functional abnormalities within the prefrontal cortex. fNIRS creates new possibilities in terms of exploration of the physical exercise. Recent articles consider which type of effort has the best effect on the hemodynamic response in the cortex. It seems that investigating the impact of the physical activity in group of psychiatric patients is an interesting direction. Conclusions. Currently, we are at the breakthrough in the fNIRS technology. The number of new studies, more precise methods of data analysis, and availability of good quality systems help us to better understand how to design scientific experiments properly and reliably measure the activity of the cerebral cortex.


Sign in / Sign up

Export Citation Format

Share Document