scholarly journals Development of an Analyzing and Tuning Methodology for the CNC Parameters Based on Machining Performance

2020 ◽  
Vol 10 (8) ◽  
pp. 2702 ◽  
Author(s):  
Ben-Fong Yu ◽  
Jenq-Shyong Chen

This paper proposes the development of a tuning methodology which can set the proper values of the Computer Numerical Control (CNC) parameters to achieve the required machining performance. For the conventional operators of machine tools, the CNC parameters were hard to be adjusted to optimal settings, which was a complicated and time-consuming task. To save time in finding optimal CNC parameters, the objective of this research was to develop a practical methodology to tune the CNC parameters effectively for easy implementation in the commercial CNC controller. Firstly, the effect of the CNC parameters in the CNC controller on the tool-path planning was analyzed via experiments. The machining performance was defined in the high-speed (HS) mode, the high-accuracy (HP) mode, and the high-surface-quality (HQ) mode, according to the dynamic errors of several specified paths. Due to the CNC parameters that have a particularly critical effect on the dynamic errors, the relationship between the CNC parameters and the dynamic errors was validated by the measured data. Finally, the tuning procedure defined the anticipated dynamic errors for the three machining modes with the actual machine. The CNC parameters will correspond with anticipated dynamics errors based on several specified paths. The experimental results showed that the HS mode was the fastest to complete the path, and the completion time of the HP and HQ modes were increased by 37% and 6%, respectively. The HP mode had the smallest dynamic errors than other modes, and the dynamic errors of the HS and HQ modes are increased by 66% and 16%. In the HQ mode, the motion oscillation was reduce significantly, and the tracking error of the HS and HP modes were increased by 85% and 28%. The advantage of the methodology is that it simplifies set-up steps of the CNC parameters, making it suitable for practical machine applications.


2011 ◽  
Vol 141 ◽  
pp. 449-454
Author(s):  
Jing Chuan Dong ◽  
Qing Jian Liu ◽  
Tai Yong Wang

High speed CNC machining relies on the smooth interpolation of tool path in order to prevent impact and vibration. We present a new interpolation scheme for CNC controller based on 6-point subdivision. The subdivision interpolation improves the smoothness of the original trajectory, while maintaining the accuracy. The algorithm is simple and effective, and therefore it is suitable for real-time execution in CNC controllers. Simulation results show that the proposed method performs better than linear interpolation, since the tracking error and contour error is reduced.



2013 ◽  
Vol 584 ◽  
pp. 149-153
Author(s):  
Jing Chuan Dong ◽  
Tai Yong Wang ◽  
Yan Yu Ding ◽  
Yu Long Cui

The computerized numerical control (CNC) machining program usually contains a large number of small line segments. The CNC controller must generate a smooth and optimized motion profile to achieve high speed and high precision machining. This paper proposed an adaptive contour error control algorithm. The curvature radius of the tool path is obtained by analyzing the geometry relationship. The algorithm uses the curvature information and a simplified servo error model to realize contour error estimation and adaptive control. The target feet rate filter (TFF) and planning unit merging (PUM) are introduced to obtain a smooth profile. Experiments result demonstrated the efficiency of the proposed algorithm.



Author(s):  
Zhiqian Sang ◽  
Xun Xu

Traditional Computer Numerical Control (CNC) machines use ISO6983 (G/M code) for part programming. G/M code has a number of drawbacks and one of them is lack of interoperability. The Standard for the Exchange of Product for NC (STEP-NC) as a potential replacement for G/M code aims to provide a unified and interoperable data model for CNC. In a modern CNC machine tool, more and more motors, actuators and sensors are implemented and connected to the NC system, which leads to large quantity of data being transmitted. The real-time Ethernet field-bus is faster and more deterministic and can fulfill the requirement of data transmission in the high-speed and high-precision machining scenarios. It can provide more determinism on communication, openness, interoperability and reliability than a traditional field-bus. With a traditional CNC system using G/M code, when the machining is interrupted by incidents, restarting the machining process is time-consuming and highly experience-dependent. The proposed CNC controller can generate just-in-time tool paths for feature-based machining from a STEP-NC file. When machining stoppage occurs, the system can recover from stoppage incidents with minimum human intervention. This is done by generating new tool paths for the remaining machining process with or without the availability of the original cutting tool. The system uses a real-time Ethernet field-bus as the connection between the controller and the motors.



Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2608 ◽  
Author(s):  
Mohammadreza Lalegani Dezaki ◽  
Mohd Khairol Anuar Mohd Ariffin ◽  
Mohd Idris Shah Ismail

Fused deposition modelling (FDM) opens new ways across the industries and helps to produce complex products, yielding a prototype or finished product. However, it should be noted that the final products need high surface quality due to their better mechanical properties. The main purpose of this research was to determine the influence of computer numerical control (CNC) machining on the surface quality and identify the average surface roughness (Ra) and average peak to valley height (Rz) when the specimens were printed and machined in various build orientations. In this study, the study samples were printed and machined to investigate the effects of machining on FDM products and generate a surface comparison between the two processes. In particular, the block and complex specimens were printed in different build orientations, whereby other parameters were kept constant to understand the effects of orientation on surface smoothness. As a result, wide-ranging values of Ra and Rz were found in both processes for each profile due to their different features. The Ra values for the block samples, printed samples, and machined samples were 21, 91, and 52, respectively, whereas the Rz values were identical to Ra values in all samples. These results indicated that the horizontal surface roughness yielded the best quality compared to the perpendicular and vertical specimens. Moreover, machining was found to show a great influence on thermoplastics in which the surfaces became smooth in the machined samples. In brief, this research showed that build orientation had a great effect on the surface texture for both processes.



2006 ◽  
Vol 505-507 ◽  
pp. 631-636 ◽  
Author(s):  
Yung Chou Kao ◽  
Hong Ying Chen ◽  
Y.C. Chen

This paper describes the development of a virtual CNC controller. Controller is the major driver for a CNC machine. Similarly, virtual controller is the key driving component for a virtual CNC, which is a three-dimensional digitized physical CNC. A virtual CNC can exist in every PC serving as the complementary safer counterpart in lecturing and learning the hand on operation of expensive machinery such as five-axis milling machine, high speed CNC and mill-turn because the virtual CNC will not break. Virtual reality environment provided by EON studio software has been adopted in establishing the interactivity of a virtual CNC based on the geometry model constructed in off-the-shelf CAD software. Visual Basic was used in implementing the graphical user interface to operate the virtual CNC through the developed virtual controller. The virtual controller is in charge of (1) parsing user’s NC codes, (2) simulating the tool path of the parsed NC codes, and (3)driving the virtual CNC according to the tool path. The developed virtual CNC controller has been successfully applied in implementing virtual CNCs based on two physical three-axis CNC machines and has also been demonstrated in an international exposition successfully. The virtual controller can enable the virtual CNC in facilitating lecturing, tutoring, self-learning, and reducing the chances of accidental breakdown of precious CNC equipment.



2014 ◽  
Vol 800-801 ◽  
pp. 607-612 ◽  
Author(s):  
Cheng Zhe Jin ◽  
Rui Fang

High speed turn-milling has superiority on the productivity and the quality of work pieces, and is more suitable to machine micro-shaft parts and desirable miniature parts based on the turn-milling technology. In this papers adopting orthogonal experiment method cutting experiments of orthogonal turn-milling Aluminum alloy have been done. The relation between turn-milling regimes (cutter rotate speed, axial feed, feed per tooth etc.) and machined surface roughness has been ascertained. Finally, primary and secondary order of cutting regimes impacting surface roughness has more been confirmed through orthogonal experiments variance analysis, the rotate speed of cutter (cutting speed) influence greatly on surface roughness. Through 2-dimension surface topography diagram and 3-dimension surface topography of processed surface, it can be seen that high speed turn-milling processing technology can process micro miniature component of high surface quality, and features excellent development prospect and application value.



Author(s):  
Hang Ye ◽  
Chi Zhou ◽  
Wenyao Xu

The hybrid stereolithography (SLA) process integrates a laser scanning-based system and a mask projection-based system. Multiple laser paths are used to scan the border of a 2D pattern, whereas a mask image is adopted to solidify the interior area. By integrating merits of two subsystems, the hybrid SLA process can achieve high surface quality without sacrificing productivity. For the hybrid system, closed polygonal contours are required to direct the laser scanning, and a binary image is also needed for the mask projection. We proposed a novel image-based slicing method. This approach can convert a 3D model into a series of binary images directly, and each image is corresponding to the cross section of the model at a specific height. Based on the resultant binary image, we use an image processing method to gradually shrink the pattern in the image. Boundaries of the shrunk image are traced and then restored as polygons to direct the laser spot movement. The final shrunk image serves as the input for the mask projection. Experimental results of test cases demonstrate that the proposed method is substantially more efficient than the traditional approaches. Its accuracy is also studied and discussed.



Author(s):  
Lei Yang ◽  
Xing Zhang ◽  
Lei Wang ◽  
Wanhua Zhao

During the working process of high-speed multiaxis machine tools, inertial forces can cause vibration and deformation of mechanical structure, which lead to the dynamic error of tool center point (TCP) relative to worktable and can adversely affect the machining performance. Considering the varying feed positions and accelerations during machining, a parameter-varying multi-rigid-body dynamic model of a 3-axis gantry machine tool is proposed. This model represents the position dependent structural dynamics and inertial forces, which can simulate the dynamic error of TCP relative to worktable within the entire workspace. The results show that the dynamic error in one direction is affected by the feed motions of multiple feed axes. The magnitudes of the dynamic error significantly vary with the position of Z-axis. And the dynamic errors in Y- and Z-direction show different varying trends. Then the theoretical model is used to discuss the dynamic error and position dependency. The expressions of TCP dynamic response and inertial forces reveal the reason why the dynamic errors in Y- and Z-direction show different varying trends.



2011 ◽  
Vol 467-469 ◽  
pp. 252-256
Author(s):  
Zhen Yu Zhao ◽  
Dong Ying Liang ◽  
Yong Shan Xiao ◽  
Bai Liu

At present, high speed machining (HSM) features in high efficiency, high precision, high flexibility and high quality. HSM technology involves many factors, including cutting mechanisms, machining performance, tool path and other aspects. The key techniques on HSM such as linear interpolation, circular interpolation, cubic B-spline curve interpolation, non-uniform rational B-spline (NURBS) curve interpolation and their respective characteristics are paid more attention and expatiated.



2016 ◽  
Vol 10 (2) ◽  
pp. 253-261
Author(s):  
Tomoya Hida ◽  
◽  
Tetsuya Asano ◽  
Chiharu Higashino ◽  
Masaaki Kanamaru ◽  
...  

Five-axis machines and multi-tasking machines are widely used because they facilitate integration of work processes and simplification of jigs and set-ups. Along with effective machine use, development of optimum machining such as research on tools and cutting methods to achieve high-speed cutting and increase of material removal rate is being investigated. While these efforts have greatly contributed to furthering of automation and cost reduction at the manufacturing site, complex machine motions and increased demanding work processes can lead to unexpected collisions and tool breakages. To prevent tool breakage caused by unexpected overloading or to improve the inefficient feed rate on the basis of safety considerations, simulations based on numerical control (NC) data are usually performed in advance to evaluate the cutting force. In high-speed, high-efficiency machining, however, the machine does not always execute movements as instructed by the NC data and the predicted cutting force does not always agree with the actual cutting forces. In this study, therefore, we developed an off-line system in which the motion information of each axis of an actual machine is acquired from a computer numerical control (CNC) controller, and is then used to predict the cutting force. The effects of using the proposed method are described in this article.



Sign in / Sign up

Export Citation Format

Share Document