scholarly journals Design and Dynamics of Kinetic Launcher for Unmanned Aerial Vehicles

2020 ◽  
Vol 10 (8) ◽  
pp. 2949
Author(s):  
Mirosław Kondratiuk ◽  
Leszek Ambroziak

Assisting in the starting procedure of Unmanned Aerial Vehicles (UAVs) is one of many very important areas of modern aviation research. Supported start-up saves fuel or electrical energy, increases operator safety and level of autonomy, extends the application area, and, in some applications, even enables the operator to shape the motion characteristics of the initial phase of a UAV’s flight. Currently used solutions, depending on an aircraft’s class, are based on the utilization of rubber, pneumatic or electromagnetic launchers. All of these launchers are used for the medium class of UAVs and all of them use the potential energy previously stored in stretched rubber, compressed air or electrical voltage. In this paper, authors propose the novel concept of a launcher powered through kinetic energy stored in a rotary wheel driven by an electric motor. Using the transmission systems of the drive and the controlled clutch and an electromagnetic brake, it is possible to precisely control the speed and acceleration of the launched object. Within the paper, the authors present and discuss the applied equations of dynamics, the results of a simulation that was carried out using the MATLAB/Simulink software and a conceptual CAD model of preliminary engineering solutions for the kinetic UAV launcher. The work is summarized in the conclusions section, which details the practical implementation of the device.

Robotica ◽  
2021 ◽  
pp. 1-27
Author(s):  
Taha Elmokadem ◽  
Andrey V. Savkin

Abstract Unmanned aerial vehicles (UAVs) have become essential tools for exploring, mapping and inspection of unknown three-dimensional (3D) tunnel-like environments which is a very challenging problem. A computationally light navigation algorithm is developed in this paper for quadrotor UAVs to autonomously guide the vehicle through such environments. It uses sensors observations to safely guide the UAV along the tunnel axis while avoiding collisions with its walls. The approach is evaluated using several computer simulations with realistic sensing models and practical implementation with a quadrotor UAV. The proposed method is also applicable to other UAV types and autonomous underwater vehicles.


2012 ◽  
Vol 47 ◽  
pp. 1386-1389 ◽  
Author(s):  
Piotr J. Dziuban ◽  
Anna Wojnar ◽  
Artur Zolich ◽  
Krzysztof Cisek ◽  
Wojciech Szumiński

Author(s):  
Rafał Różycki ◽  
Tomasz Lemański ◽  
Joanna Józefowska

The paper considers the concept of a charging station for an Unmanned Aerial Vehicles (UAV, drone) fleet. The special feature of the station is its autonomy understood as independence from a constant energy source and an external module for managing its operation. It is assumed that the station gives the possibility to charge batteries of many drones simultaneously. However, the maximum number of simultaneously charged drones is limited by a temporary total charging current (i.e. there is a power limit). The paper proposes a mathematical model of charging a single drone battery. The problem of finding a schedule of charging tasks is formulated, in which the minimum time of the charging process for all drones is assumed as the optimization criterion. Searching for a solution to this problem is performed by an autonomous charging station with an appropriate computing module equipped with a Variable Speed Processor (VSP). To that end an appropriate algorithm is activated (i.e. a computational job), the execution of which consumes a certain amount of limited energy available to the charging station. In the paper we consider energy-aware execution of an implementation of an evolutionary algorithm (EA) as a computational job. The possibility of saving energy by controlling the CPU frequency of a VSP is analyzed. A characteristic feature of the processor is the non-linear relationship between the processing rate and electric power usage. According to this relationship, it turns out that slower execution of the computational job saves electrical energy consumed by the processor.


2019 ◽  
Vol 92 (2) ◽  
pp. 229-236
Author(s):  
Svetoslav Zabunov ◽  
Roumen Nedkov

Purpose This paper aims to reveal the authors’ conceptual and experimental work on an innovative avionics paradigm for small unmanned aerial vehicles (UAVs). Design/methodology/approach This novel approach stipulates that, rather than being centralized at the autopilot, control of avionics devices is instead distributed among controllers – spread over the airframe span, in response to avionics devices’ natural location requirements. The latter controllers are herein referred to as edge controllers by the first author. Findings The edge controller manifests increased efficiency in a number of functions, some of which are unburdened from the autopilot. The edge controller establishes a new paradigm of structure and design of small UAVs avionics such that any functionality related to the periphery of the airframe is implemented in the controller. Research limitations/implications The research encompasses a workbench prototype testing on a breadboard, as the presented idea is a novel concept. Further, another test has been conducted with four controllers mounted on a quadcopter; results from the vertical attitude sustenance are disclosed herein. Practical implications The motivation behind developing this paradigm was the need to position certain avionics devices at different locations on the airframe. Due to their inherent functional requirements, most of these devices have hitherto been placed at the periphery of the aircraft construction. Originality/value The current paper describes the novel avionics paradigm, compares it to the standard approach and further reveals two experimental setups with testing results.


Drones ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 12
Author(s):  
Kerry L. Mapes ◽  
Narcisa G. Pricope ◽  
J. Britton Baxley ◽  
Lauren E. Schaale ◽  
Raymond M. Danner

Knowledge of temperature variation within and across beach-nesting bird habitat, and how such variation may affect the nesting success and survival of these species, is currently lacking. This type of data is furthermore needed to refine predictions of population changes due to climate change, identify important breeding habitat, and guide habitat restoration efforts. Thermal imagery collected with unmanned aerial vehicles (UAVs) provides a potential approach to fill current knowledge gaps and accomplish these goals. Our research outlines a novel methodology for collecting and implementing active thermal ground control points (GCPs) and assess the accuracy of the resulting imagery using an off-the-shelf commercial fixed-wing UAV that allows for the reconstruction of thermal landscapes at high spatial, temporal, and radiometric resolutions. Additionally, we observed and documented the behavioral responses of beach-nesting birds to UAV flights and modifications made to flight plans or the physical appearance of the UAV to minimize disturbance. We found strong evidence that flying on cloudless days and using sky-blue camouflage greatly reduced disturbance to nesting birds. The incorporation of the novel active thermal GCPs into the processing workflow increased image spatial accuracy an average of 12 m horizontally (mean root mean square error of checkpoints in imagery with and without GCPs was 0.59 m and 23.75 m, respectively). The final thermal indices generated had a ground sampling distance of 25.10 cm and a thermal accuracy of less than 1 °C. This practical approach to collecting highly accurate thermal data for beach-nesting bird habitat while avoiding disturbance is a crucial step towards the continued monitoring and modeling of beach-nesting birds and their habitat.


2021 ◽  
Vol 1 (2(57)) ◽  
pp. 15-19
Author(s):  
Robert Bieliakov

The object of research is the process of controlling the trajectory of unmanned aerial vehicles (UAVs) in autonomous flight mode based on neural network algorithms. The study is based on the application of numerical-analytical approach to the selection of modern technical solutions for the construction of standard models of platformless inertial navigation systems (BINS) for micro and small UAVs, followed by support for assumptions. The results of simulation in the Matlab environment allowed to simulate the operation of the UAV control system based on MEMS technology (using microelectromechanical systems) and Arduino microcomputers. It was also possible to experimentally determine the nature of the influence of the structure of the selected neural network on the process of formation of navigation data during the disappearance of the GPS signal. Thus, to evaluate the effectiveness of the proposed solutions for the construction of BINS, a comparative analysis of the application of two algorithms ELM (Extreme Learning Machine)-Kalman and WANN (Wavelet Artificial Neural Network)-RNN (Recurrent Neural Network)-Madgwick in the form of two experiments. The purpose of the experiments was to determine: the study of the influence of the number of neurons of the latent level of the neural network on the accuracy of approximation of navigation data; determining the speed of the process of adaptive learning of neural network algorithms BINS UAV. The results of the experiments showed that the application of the algorithm based on ELM-Kalman provides better accuracy of learning the BINS neural network compared to the WANN-RNN-Madgwick algorithm. However, it should be noted that the accuracy of learning improved with the number of neurons in the structure of the latent level <500, which iincreases computational complexity and increases the learning process time. This can complicate the practical implementation using micro- and small UAV equipment. In addition, thanks to the simulation, the result of the study of the application of the proposed neural network algorithms to replace the input data instead of GPS signals to the input BINS, allowed to estimate the positioning error during the disappearance of GPS signals. Also, the application of the WANN-RNN-Madgwick algorithm allows to approximate and extrapolate the input signals of navigation parameters in a dynamic environment, while the process of adaptive learning in real time.


2020 ◽  
Vol 33 (02) ◽  
pp. 638-650
Author(s):  
Mikhail Yu. Babich ◽  
Mikhail M. Butaev ◽  
Dmitry V. Pashchenko ◽  
Alexey I. Martyshkin ◽  
Dmitry A. Trokoz

Recently, unmanned aerial vehicles have been an important part of scientific research in various fields. Quadrocopter is an unmanned aerial vehicle with four rotors, two of which rotate clockwise, the other two counterclockwise. Changing the speed of screw rotation allows you to control the movement of the apparatus. The article proposed and tested a mathematical model of a quadcopter. They presented the development of a simple control algorithm that allows to stabilize the height and angular position. The research results show the efficiency of the algorithm and the possibility of its practical implementation. The developed mathematical model can be used instead of a real quadcopter, which will significantly reduce the time during research, as well as avoid the quadrocopter damage, reducing the number of launches.


Author(s):  
Bharg Shah ◽  
Onur Bilgen

Abstract This paper presents an application of a novel piezocomposite rotor system on a model-scale helicopter. The piezocomposite rotor concept can be implemented on various rotary systems, including small unmanned aerial vehicles, and tandem rotor, multi-rotor, single-rotor and other rotary systems. Based on authors’ previous research, a new design of the so-called solid-state rotor concept is implemented on a single degree of the freedom apparatus that the derived from the model-scale helicopter. An electromagnetic power generator is used to convert the mechanical energy due to the rotation of the generator into electrical energy, and this is used to actuate the piezocomposite blades. The actuation by the piezocomposite actuators on the rotor blade results in a change of the camber of the rotor blade. The change in camber generates an increase of thrust.


2020 ◽  
Vol 14 (1) ◽  
pp. 50-58
Author(s):  
Patryk Szywalski ◽  
Andrzej Waindok

AbstractA design of an unmanned aerial vehicle (UAV) construction, intended for autonomous flights in a group, was presented in this article. The design assumptions, practical implementation and results of the experiments were given. Some of the frame parts were made using 3D printing technology. It not only reduces the costs but also allows for better fitting of the covers to the electronics, which additionally protects them against shocks and dirt. The most difficult task was to develop the proper navigation system. Owing to high costs of precision positioning systems, common global positioning system (GPS) receivers were used. Their disadvantage is the floating position error. The original software was also described. It controls the device, allows performing autonomous flight along a pre-determined route, analyses all parameters of the drone and sends them in a real time to the operator. The tests of the system were carried out and presented in the article, as well.


Sign in / Sign up

Export Citation Format

Share Document