scholarly journals Drying Performance and Aflatoxin Content of Paddy Rice Applying an Inflatable Solar Dryer in Burkina Faso

2020 ◽  
Vol 10 (10) ◽  
pp. 3533 ◽  
Author(s):  
Sebastian Romuli ◽  
Steffen Schock ◽  
Marius Kounbèsiounè Somda ◽  
Joachim Müller

The drying performance of paddy rice using an inflatable solar dryer (ISD), or also known as GrainPro® Solar Bubble Dryer™, was evaluated and compared to conventional sun drying in Burkina Faso. Drying time was around eight hours. Thermal imaging was conducted to observe temperature distribution in the ISD during drying and mixing. Shadow casting was observed in the ISD due to the round shape of the black plastic film, which reduced the temperature of the paddy rice to about 10 °C. The temperature inside the ISD was up to 13 °C higher than the ambient temperature, whereas the temperature of paddy rice on the top layer was about 5 °C higher than on the bottom. The final moisture content of paddy rice dried in the ISD and under the sun was not considerably different. Under certain circumstances, impurities in paddy rice dried in the ISD could be substantially lower than for sun drying. The aflatoxin level of paddy rice was under the maximum limit of the EU regulation. Drying paddy rice seemed to be effective to remove aflatoxin type AFG2 content. Further adaptation of the ISD design for drying operations on rough surfaces and sandy soils is suggested.

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
James Owusu-Kwarteng ◽  
Francis K. K. Kori ◽  
Fortune Akabanda

The objective of this work was to determine the effects of blanching and two drying methods, open-sun drying and natural convection solar drying, on the quality characteristics of red pepper. A 2 × 3 factorial design with experimental factors as 2 drying methods (open-sun drying and use of solar dryer) and 3 levels of pepper blanching (unblanched, blanched in plain water, and blanched in 2% NaCl) was conducted. Dried pepper samples were analysed for chemical composition, microbial load, and consumer sensory acceptability. Blanching of pepper in 2% NaCl solution followed by drying in a natural convection solar dryer reduced drying time by 15 hours. Similarly, a combination of blanching and drying in the solar dryer improved microbial quality of dried pepper. However, blanching and drying processes resulted in reduction in nutrients such as vitamin C and minerals content of pepper. Blanching followed by drying in natural convection solar dryer had the highest consumer acceptability scores for colour and overall acceptability, while texture and aroma were not significantly (p>0.05) affected by the different treatments. Therefore, natural convection solar dryer can be used to dry pepper with acceptable microbial and sensory qualities, as an alternative to open-sun drying.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Masnaji R. Nukulwar ◽  
Vinod B. Tungikar

Abstract The objective of this study is to find an optimized thin-layer mathematical model suitable for drying kinetics of turmeric. Turmeric has a high moisture content which necessitates effective drying. A 10 kg, sample batch, of turmeric was dried in a solar dryer. Drying air temperatures and air velocity were observed in the range of 55 °C–68 °C and 0.7 m/s–1.4 m/s, respectively, in the drying experiments. It is seen that the moisture content of the turmeric is reduced from 77% to 11.93% in 22 h when compared with open sun drying, which required 60 h for the same reduction in the moisture content. Scheffler dish was used to generate steam for the dryer. Seven thin-layer mathematical models, cited in the literature, had been used for the study. These models were applied for different trays placed in the dryer. The result of the research and experimentation showed that the Page model fits best for drying in the steam-based dryer and open sun drying. Experimental results showed 63.33% saving in drying time, and the drying efficiency was found as 29.85%. Uncertainty in the drying efficiency was observed as 0.67%. Experimental investigation and the findings from the mathematical modeling are presented in this paper.


Author(s):  
Vikrant Tapas ◽  
Rituraj Chandrakar ◽  
Anil Kumar ◽  
Prem Shankar Sahu ◽  
Haldhar Ram Chandrakar ◽  
...  

In the Chhattisgarh state of India, the Bastar region is famous for its various forest produce collected by local inhabitants. These collected forest produce are dried in open sun drying. This chapter presents the design and analysis of solar dryer which is simple in construction and a low-cost dryer. The construction of the solar dryer will be made of galvanized mild steel sheet absorbing the sun's radiation. The hot air will be taken out through a wind turbine ventilator at the top to maintain the required humidity level in the solar dryer. The analysis shows that the temperature inside the solar dryer is evenly distributed. The suggested solar dryer will reduce the drying time of the forest produce.


2014 ◽  
Vol 953-954 ◽  
pp. 16-19 ◽  
Author(s):  
Yuttachai Keawsuntia

This research paper presents the experimental results of drying of chili by using the active solar dryer and sun drying because of chili is a commercial agricultural product of Thailand. The active solar dryer consisted of a solar collector, a drying chamber and a chimney. The small fans were installed in the solar collector of active solar dryer to provide the air flow circulated in the solar collector and a drying chamber. Drying of chili of 20 kg from moisture content 84 percent wet basis to 10 percent wet basis following the Thai Agricultural Standard (TAS 3001-2010) showed that the use of the active solar dryer to make the drying time reduced about 28.7 percent compared with sun drying because of the hot air temperature inside the drying chamber higher than the ambient temperature about 10 to 15 . The quality of dried chili from the active solar dryer better than dried chili from sun drying.


2022 ◽  
Vol 43 (1) ◽  
pp. 85-96
Author(s):  
S.K. Singh ◽  
◽  
Mr. Samsher ◽  
B.R. Singh ◽  
R.S. Sengar ◽  
...  

Aim: Sun drying system is not able to provide the best drying performance and quality dried produce of leafy vegetables. To facilitate better options to the farmers, this study aims to develop and evaluate a cost-effective greenhouse type solar dryer to improve shelf stability of coriander leaves. Methodology: A greenhouse type solar dryer (5m x 3m x 2.3m) was developed with the provision of rigid frame, 200 µ UV stabilized LDPE glazing material, solar collector cum drying chamber, inlet air and outlet air openings. The dryer was evaluated for its performance, drying characteristics of coriander leaves and qualitative evaluation of dried product as compared to open sun drying. Results: The greenhouse type solar dryer performed well for coriander drying with increased level of temperature inside the dryer (42oC) and 24% reduced drying time as compared to sun drying (29oC).The loading capacity, efficiency, payback period and B:C ratio of the dryer were found to be 100 kg, 70.47 %, 1.26 yr and 1.79, respectively. The drying of coriander leaves occured mostly in falling rate period. Coriander leaves dried under the dryer possessed higher values of chlorophyll content (1.356 mg g-1 of tissue), ascorbic acid content (111.257 mg 100g-1), rehydration ratio (5.302) and coefficient of rehydration (0.762) than sun dried coriander leaves with the respective values of these quality parameters being 1.097 mg g-1 of tissue, 62.37 mg 100g-1, 4.715 and 0.689, respectively.


2021 ◽  
Vol 11 (15) ◽  
pp. 7074
Author(s):  
Janvier Ntwali ◽  
Steffen Schock ◽  
Sebastian Romuli ◽  
Christine G. Kiria Chege ◽  
Noble Banadda ◽  
...  

Maize is an important staple in Africa, which necessitates immediate drying to preserve the postharvest quality. The traditional drying of maize in the open sun is prone to adverse weather and extraneous contamination. In this study, the drying performance of an inflatable solar dryer (ISD) was compared to direct sun drying (DSD) in Gombe Town, Wakiso District (Uganda) by analysing the moisture content, yeasts, moulds, aflatoxin, and colour. The maximum temperature inside the ISD reached 63.7 °C and averaged 7 °C higher than the ambient temperature. Maize was dried using both methods to a moisture content below 14% after two days. In one of the received maize lots that was already heavily contaminated after harvest, drying with DSD and ISD reduced the aflatoxin content from 569.6 µg kg−1 to 345.5 µg kg−1 and 299.2 µg kg−1, respectively. Although the drying performance in terms of drying time and product quality regarding colour, yeast, and mould was similar for both drying methods, the advantage of ISD in reducing the risk of spoilage due to sudden rain is obvious. A strategy for the early detection of aflatoxins in maize is recommended to avoid contaminated maize in the food chain.


2012 ◽  
Vol 2 (1) ◽  
pp. 14-20
Author(s):  
Yuwana Yuwana

Experiment on catfish drying employing ‘Teko Bersayap’ solar dryer was conducted. The result of the experiment indicated that the dryer was able to increase ambient temperature up to 44% and decrease ambient relative humidity up to 103%. Fish drying process followed equations : KAu = 74,94 e-0,03t for unsplitted fish and KAb = 79,25 e-0,09t for splitted fish, where KAu = moisture content of unsplitted fish (%), KAb = moisture content of splitted fish (%), t = drying time. Drying of unsplitted fish finished in 43.995 hours while drying of split fish completed in 15.29 hours. Splitting the fish increased 2,877 times drying rate.


Horticulturae ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 40
Author(s):  
Vincenzo Alfeo ◽  
Diego Planeta ◽  
Salvatore Velotto ◽  
Rosa Palmeri ◽  
Aldo Todaro

Solar drying and convective oven drying of cherry tomatoes (Solanum lycopersicum) were compared. The changes in the chemical parameters of tomatoes and principal drying parameters were recorded during the drying process. Drying curves were fitted to several mathematical models, and the effects of air temperature during drying were evaluated by multiple regression analyses, comparing to previously reported models. Models for drying conditions indicated a final water content of 30% (semidry products) and 15% (dry products) was achieved, comparing sun-drying and convective oven drying at three different temperatures. After 26–28 h of sun drying, the tomato tissue had reached a moisture content of 15%. However, less drying time, about 10–11 h, was needed when starting with an initial moisture content of 92%. The tomato tissue had high ORAC and polyphenol content values after convective oven drying at 60 °C. The dried tomato samples had a satisfactory taste, color and antioxidant values.


2020 ◽  
Author(s):  
SEBIHA REHMAN ◽  
SEEMIN RUBAB

Abstract The paper presents a kinetic study of solar dried mint (Mentha spicata L.) without any pre-treatment. Mint grows effortlessly in Kashmir valley but is not obtainable throughout the year because of inconsiderate weather conditions. The genus belongs to the Labiatae family and includes large varieties with different properties. A significant quality parameter is its colour. The drying kinetics of mint leaves dried in Domestic Solar Dryer in terms of colour attributes, moisture content, drying time, non enzymatic browning, water activity, rehydration ratio was studied. This study is very useful for household scale drying of mint leaves to optimize drying process and to achieve superior quality dried product at home maintaining its colour and aroma.


Sign in / Sign up

Export Citation Format

Share Document