scholarly journals Rainfall Parameters Affecting Splash Erosion under Natural Conditions

2020 ◽  
Vol 10 (12) ◽  
pp. 4103 ◽  
Author(s):  
Nives Zambon ◽  
Lisbeth Lolk Johannsen ◽  
Peter Strauss ◽  
Tomas Dostal ◽  
David Zumr ◽  
...  

The interaction between rainfall erosivity parameters and splash erosion is crucial for describing the soil erosion process; however, it is rarely investigated under natural rainfall conditions. In this study, we conducted splash erosion experiments under natural rainfall on three sites in Central Europe. The main goal was to obtain the relationship between splash erosion of the bare soil in seedbed condition and commonly used rainfall erosivity parameters (kinetic energy, intensity, and rainfall erosivity (EI30)). All sites were equipped with a rain gauge and an optical laser disdrometer where the splash erosion was measured, with modified Morgan splash cups. In order to investigate which parameter best describes the splash erosion process for all sites, a regression analysis was performed. In total, 80 splash erosion events were evaluated. Splash erosion can be described as a linear function of total kinetic energy and a non-linear function of EI30. However, the use of the total kinetic energy led to underestimation of the splash erosion rates for highly intensive rainfalls. Therefore, better results were obtained when using average rainfall intensity as the splash erosion predictor or the kinetic energy divided by the rainfall duration. Minor differences between the replicates during splash erosion measurements indicate that the modified Morgan splash cup provides a good tool for soil erosion assessment.

2017 ◽  
Vol 43 (1) ◽  
pp. 63 ◽  
Author(s):  
J. J. Zemke

A portable rainfall simulator was built for assessing runoff and soil erosion processes at interrill scale. Within this study, requirements and constraints of the rainfall simulator are identified and discussed. The focus lies on the calibration of the simulator with regard to spatial rainfall homogeneity, rainfall intensity, drop size, drop fall velocity and rainfall kinetic energy. These parameters were obtained using different methods including a Laser Precipitation Monitor. A detailed presentation of the operational characteristics is given. The presented rainfall simulator setup featured a rainfall intensity of 45.4 mm·h-1 with a spatial homogeneity of 80.4% based on a plot area of 0.64 m². Because of the comparatively low drop height (2 m), the diameter-dependent terminal fall velocity (1.87 m·s-1) was lower than benchmark values for natural rainfall. This conditioned also a reduced rainfall kinetic energy (4.6 J·m-2·mm-1) compared to natural rainfall with same intensity. These shortfalls, a common phenomenon concerning portable rainfall simulators, represented the best possible trade-off between all relevant rainfall parameters obtained with the given simulator setup. Field experiments proved that the rainfall erosivity was constant and replicable.


2020 ◽  
Vol 24 (11) ◽  
pp. 5407-5422
Author(s):  
Qiang Dai ◽  
Jingxuan Zhu ◽  
Shuliang Zhang ◽  
Shaonan Zhu ◽  
Dawei Han ◽  
...  

Abstract. Soil erosion can cause various ecological problems, such as land degradation, soil fertility loss, and river siltation. Rainfall is the primary water-driven force for soil erosion, and its potential effect on soil erosion is reflected by rainfall erosivity that relates to the raindrop kinetic energy. As it is difficult to observe large-scale dynamic characteristics of raindrops, all the current rainfall erosivity models use the function based on rainfall amount to represent the raindrops' kinetic energy. With the development of global atmospheric re-analysis data, numerical weather prediction techniques become a promising way to estimate rainfall kinetic energy directly at regional and global scales with high spatial and temporal resolutions. This study proposed a novel method for large-scale and long-term rainfall erosivity investigations based on the Weather Research and Forecasting (WRF) model, avoiding errors caused by inappropriate rainfall–energy relationships and large-scale interpolation. We adopted three microphysical parameterizations schemes (Morrison, WDM6, and Thompson aerosol-aware) to obtain raindrop size distributions, rainfall kinetic energy, and rainfall erosivity, with validation by two disdrometers and 304 rain gauges around the United Kingdom. Among the three WRF schemes, Thompson aerosol-aware had the best performance compared with the disdrometers at a monthly scale. The results revealed that high rainfall erosivity occurred in the west coast area at the whole country scale during 2013–2017. The proposed methodology makes a significant contribution to improving large-scale soil erosion estimation and for better understanding microphysical rainfall–soil interactions to support the rational formulation of soil and water conservation planning.


2016 ◽  
Vol 14 (1) ◽  
pp. e1201 ◽  
Author(s):  
MaoSheng Ge ◽  
Pute Wu ◽  
Delan Zhu ◽  
Daniel P. Ames

<p>An indoor experiment was conducted to analyze the movement characteristics of different sized droplets and their influence on water application rate distribution and kinetic energy distribution. Radial droplets emitted from a Nelson D3000 sprinkler nozzle under 66.3, 84.8, and 103.3 kPa were measured in terms of droplet velocity, landing angle, and droplet kinetic energy and results were compared to natural rainfall characteristics. Results indicate that sprinkler irrigation droplet landing velocity for all sizes of droplets is not related to nozzle pressure and the values of landing velocity are very close to that of natural rainfall. The velocity horizontal component increases with radial distance while the velocity vertical component decreases with radial distance. Additionally, landing angle of all droplet sizes decreases with radial distance. The kinetic energy is decomposed into vertical component and horizontal component due to the oblique angles of droplet impact on the surface soil, and this may aggravate soil erosion. Therefore the actual oblique angle of impact should be considered in actual field conditions and measures should be taken for remediation of soil erosion if necessary.</p>


2021 ◽  
Vol 24 (s1) ◽  
pp. 31-36
Author(s):  
Peter Valent ◽  
Roman Výleta

Abstract Rainfall erosivity factor (R) of the USLE model is one of the most popular indicators of areas potentially susceptible to soil erosion. Its value is influenced by the number and intensity of extreme rainfall events. Since the regional climate models expect that the intensity of heavy rainfall events will increase in the future, the currently used R-factor values are expected to change as well. This study investigates possible changes in the values of R-factor due to climate change in the Myjava region in Slovakia that is severely affected by soil erosion. Two rain gauge stations with high-resolution 1-minute data were used to build a multiple linear regression model (r 2 = 0.98) between monthly EI 30 values and other monthly rainfall characteristics derived from low-resolution daily data. The model was used to estimate at-site R-values in 13 additional rain gauge stations homogeneously dispersed over the whole region for four periods (1981–2010, 2011–2040, 2041–2070, 2071–2100). The at-site estimates were used to create R-factor maps using a geostatistical approach. The results showed that the mean R-factor values in the region might change from 429 to as much as 520 MJ.mm.ha−1.h−1.yr−1 in the second half of the 21st century representing a 20.5% increase.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 722
Author(s):  
Gianni Bellocchi ◽  
Nazzareno Diodato

Regional studies on the erosive power of rainfall patterns are still limited and the actual impacts that may follow on erosional and sedimentation processes are poorly understood. Given the several interrelated challenges of environmental management, it is also not always unclear what is relevant for the development of adaptive and integrated approaches facilitating sustainable water resource management. This editorial introduces the Special Issue entitled “Rainfall Erosivity in Soil Erosion Processes”, which offers options to fill some of these gaps. Three studies performed in China and Central Asia (by Duulatov et al., Water 2019, 11, 897, Xu et al., 2019, 11, 2429, Gu et al. 2020, 12, 200) show that the erosion potential of rainfall is increasing in this region, driving social, economic, and environmental consequences. In the same region (the Weibei Plateau in China), Fu et al. (Water 2019, 11, 1514) assessed the effect of raindrop energy on the splash distance and particle size distribution of aggregate splash erosion. In the Mediterranean, updated estimates of current and future rainfall erosivity for Greece are provided by Vantas et al. (Water 2020, 12, 687), while Diodato and Bellocchi (Water 2019, 11, 2306) reconstructed and investigated seasonal net erosion in an Italian catchment using parsimonious modelling. Then, this Special Issue includes two technologically oriented articles by Ricks at al. The first (Water 2019, 11, 2386) evaluated a large-scale rainfall simulator design to simulate rainfall with characteristics similar to natural rainfall. The data provided contribute to the information that may be useful for the government’s decision making when considering landscape changes caused by variations in the intensity of a rainfall event. The second article (Water 2020, 12, 515) illustrated a laboratory-scale test of mulching methods to protect against the discharge of sediment-laden stormwater from active construction sites (e.g., highway construction projects).


2020 ◽  
Author(s):  
Lisbeth Lolk Johannsen ◽  
Nives Zambon ◽  
Peter Strauss ◽  
Tomas Dostal ◽  
Martin Neumann ◽  
...  

&lt;p&gt;Rainfall kinetic energy (KE) is an important indicator for the potential soil loss due to rainfall in erosion risk assessment. Kinetic energy-intensity (I) relationships have been developed as a means to calculate the KE of rainfall, when only the rainfall intensity is known. The direct measurement of KE has been enabled due to the use of disdrometers, which measure the size and velocity of raindrops. Previous measurements have shown that rainfall measurements for the same site differed among disdrometer types. Therefore, the best fitting KE-I relationship is likely dependent on the type of disdrometer. In this study, the influence of the disdrometer-specific drop size and velocity measurements on the formulation of new KE-I relationships as well as the fit of existing equations from literature was investigated. Disdrometer rainfall data was collected in 1-minute intervals from six laser-based disdrometers. Two disdrometers of each of the following three types were compared: the PWS100 Present Weather Sensor from Campbell Scientific, the Laser Precipitation Monitor from Thies Clima and the first generation Parsivel from OTT Hydromet. The disdrometers were set up individually at sites in Austria, Czech Republic and New Zealand. Rainfall was measured between 2014 and 2019 with varying amounts of collected data for each site. The results revealed the inherent differences in drop size and velocity distribution estimation between different types of devices. The same pattern of rainfall drop size and velocity distribution could be seen for disdrometers of the same type despite spatial separation. This indicates that actual spatial differences in rainfall characteristics may be difficult to discern when comparing data from different types of disdrometers. New exponential KE-I relationships based on disdrometer data were formulated for each site and device. To confirm the use of the new KE-I equations, one of the equations was validated using rain gauge data from the same site. The best fit of literature KE-I equation varied among sites and devices. The relationship employed in the Revised Universal Soil Loss Equation (RUSLE) always underestimated KE with a percent bias ranging from -2 to -30 %. This study highlights the differences in disdrometer rainfall kinetic energy measurements and how these influence the formulation and evaluation of KE-I relationships, which are important in rainfall erosivity studies.&lt;/p&gt;


2021 ◽  
Vol 9 ◽  
Author(s):  
Sun Sanxiang ◽  
Zhang Yunxia ◽  
Lei Pengshui

This research aims to unfold the mass exchange mechanism of water and soil on the soil surface in the rainfall splash erosion process. We regard the rainfall splash erosion process as a collision process between the raindrop and the soil particle on the soil interface. This recognition allows us to incorporate research approaches from the spring vibrator model, which has been developed for simulating the impact of liquid drops on solid surface. We further argue that because a same set of factors determine the splash amount and infiltration amount and it is relatively simpler to observe the infiltration amount, an investigation into the relationship between the splash amount and infiltration amount would be able to provide a new channel for quantifying the splash erosion. This recognition leads us to examining the relationship between single raindrop, rainfall kinetic energy and splash erosion from both theoretical and empirical angles, with an emphasis on the relationship between the infiltration amount and the splash erosion. Such an investigation would add value to the collective effort to establish mass exchange law in water-soil interface during rainfall splash erosion. It is found that during the rainfall splash process, the splash erosion is proportional to the rainfall kinetic energy; and has a linear relation to the infiltration amount, with the rainfall intensity as one of important parameters and the slope depending on the unit conversation of the infiltration amount and the splash erosion. If the units of two items are same, the slope is the ratio of the soil and water density, and the splash erosion velocity of the rainfall is half of the rainfall terminal velocity. The single raindrop kinetic energy and the splash erosion have a quadratic parabola relation, and the splash velocity is about 1/3 of single raindrop terminal velocity.


2021 ◽  
Author(s):  
Francis Matthews ◽  
Panos Panagos ◽  
Gert Verstraeten

&lt;p&gt;The characteristics (magnitude and timing) of individual rainfall erosivity (RE) events in Europe strongly control soil loss at timescales from the individual event to long term annual average. While annual averages of soil erosion encompass the long-term variability of the event-based drivers of soil erosion (soil condition, water kinetic energy, vegetation properties), they provide both little direct information on the timing of soil loss or capacity to fully understand future erosion. Across the spectrum of empirical to physically based process models, event-scale estimates of rainfall energy are vital. The (R)USLE EI&lt;sub&gt;30&lt;/sub&gt; index is a popular description of the combined effect of rainfall kinetic energy and the maximum 30-minute intensity of a rainfall event on soil loss. Modelling RE from daily or event rainfall accumulation seeks to capture the intra-annual meteorological controls on the EI30 index, with the goal of utilising rainfall data with higher abundance (eg daily) than conventional but less common hyetograph data. To date, no systematic study has provided model parameter surfaces for Europe&amp;#8217;s climatic regions and investigated their spatial configuration. For each of 74 relevant environmental strata (EnS) within 13 broader environmental zones, we calibrate and validate 5 power-law based models with monthly and annual parameter sets using the REDES dataset, composed of over 300,000 RE events from national gauge networks.&lt;/p&gt;&lt;p&gt;We demonstrate the applicability of delineated environmental strata for subsampling and modelling event rainfall erosivity with heterogeneous national gauge data coverage and extent. Power-law model fits with 12 individual monthly parameter sets outperformed annual models with periodic cosine functions. The power-law &amp;#945; and &amp;#946; parameters are generally correlated through space (r = 0.66) and follow the general European trend of long-term annual average RE, increasing from North-West to South-East. The average annual Nash-Sutcliffe model efficiency for all strata increased from 0.427 (max: 0.76, min: 0.21) to 0.437 when the top 1 percentile of events were removed, which contribute between 8 and 27% of the total RE per stratum. The prediction capacity was higher in autumn and winter than in spring and summer when rainfall holds generally higher unit kinetic energy. Average model efficiency per environmental zone depended on both the rainfall stochasticity and size of the national data sample within each stratum, highlighting the importance of ample data extents for predicting event rainfall erosivity in Europe.&lt;/p&gt;


2019 ◽  
Vol 9 ◽  
Author(s):  
Somayeh Soltani-Gerdefaramarzi ◽  
Nafiseh Ghezelseflue ◽  
Mehdi Boroughani

Splash erosion is recognized as the first stage in soil erosion process and results from the bombing of the soil surface by rain drops. One of the soil erosion control methods is the use of chemical polymers. The purpose of this study was to investigate the effects of different rates of polyacrylamide - PAM (0, 2, 4 and 6 kg/ha) - on the rate of splash erosion at three rainfall intensities (60, 90 and 120 mm/h) and three rainfall durations (10, 20 and 30 minutes) in laboratory conditions using a FEL3 rainfall simulator and Morgan splash bowls on a marly soil with loam soil texture. In all three intensities, rainfall duration and PAM treatments, the reductions of erosion were significant at 99% level, while their interaction was not statistically significant. The results indicated that 2 kg/ha of PAM did not show any significant difference in splash erosion reduction for all the intensities and durations. Increasing the rate of PAM from 4 kg/ha to 6 kg/ha helped to reduce the splash erosion rate; however, there was not a significant difference between the rates of 4 and 6 kg/ha of PAM in the intensity of 90 and 120 mm/h. Most splash erosion reduction (54%) was obtained for the intensity of 60 mm/h and the duration of 10 min with 6 kg/ha of PAM.


2010 ◽  
Vol 7 (3) ◽  
pp. 3453-3479
Author(s):  
G. Catari ◽  
J. Latron ◽  
F. Gallart

Abstract. The sources of uncertainty associated with the calculation of rainfall kinetic energy and rainfall erosivity were investigated when the USLE R factor was operationally calculated for a mountainous river basin (504 km2) in the Southeastern Pyrenees. Rainfall kinetic energy was first obtained at the scale of the rainfall event by means of sub-hourly precipitation tipping-bucket rain gauge records and updates of the Kinnell (1981) equation. Annual erosivity values for the nearby pluviometric stations were then derived from the linear regressions between daily rainfall erosivity and daily precipitation, obtained for two different seasons. Finally, maps for rainfall erosivity estimates were obtained from the station values with Thiessen polygons. The sources of uncertainty analysed were i) the tipping-bucket instrumental errors, ii) the efficiency of the Kinnell (1981) equation, iii) the efficiency of the regressions between daily precipitation and kinetic energy, iv) the temporal variability of annual rainfall erosivity values, and the spatial variability of v) annual rainfall erosivity values and vi) long-term R factor values. The results showed that the uncertainty associated with the calculation of rainfall kinetic energy from rainfall intensity at the event and station scales is highly relevant and must be taken into account for experimental or modelling purposes; for longer temporal scales, the relevance of this source of uncertainty remains high if there is a low variability of the types of rain. Temporal variability of precipitation at wider spatial scales is the main source of uncertainty when rainfall erosivity is to be calculated on an annual basis, whereas the uncertainty associated with the long-term R factor is rather low and less important than the uncertainty associated with the other RUSLE factors when operationally used for long-term soil erosion modelling.


Sign in / Sign up

Export Citation Format

Share Document