scholarly journals Post-synthesis Tellurium Doping Induced Mirror Twin Boundaries in Monolayer Molybdenum Disulfide

2020 ◽  
Vol 10 (14) ◽  
pp. 4758
Author(s):  
Xujing Ji ◽  
Manjunath Nallappagari Krishnamurthy ◽  
Danhui Lv ◽  
Jixue Li ◽  
Chuanhong Jin

Mirror twin boundaries (MTBs) have brought intriguing one-dimensional physics into the host 2D crystal. In this letter, we reported a chalcogen atom exchange route to induce MTBs into as-formed MoS2 monolayers via post-synthesis tellurium doping. Results from annular dark-field scanning transition electron microscope (ADF-STEM) characterizations revealed that tellurium substituted the sulfur sublattices of MoS2 preferentially around the edge areas. A large number of MTBs in a configuration of 4|4P-Te was induced therein. Analysis of the lattice structures around MTBs revealed that such a tellurium-substitution-induced MTB formation is an energy-favored process to reduce the strain upon a high ratio of tellurium doping.

2020 ◽  
Vol 50 (1) ◽  
Author(s):  
Gyeong Hee Ryu ◽  
Ren-Jie Chan

AbstractTransition metal dichalcogenides (TMD), which is composed of a transition metal atom and chalcogen ion atoms, usually form vacancies based on the knock-on threshold of each atom. In particular, when electron beam is irradiated on a monolayer TMD such as MoS2 and WS2, S vacancies are formed preferentially, and they are aligned linearly to constitute line defects. And then, a hole is formed at the point where the successively formed line defects collide, and metal clusters are also formed at the edge of the hole. This study reports a process in which the line defects formed in a monolayer WS2 sheet expends into holes. Here, the process in which the W cluster, which always occurs at the edge of the formed hole, goes through a uniform intermediate phase is explained based on the line defects and the formation behavior of the hole. Further investigation confirms the atomic structure of the intermediate phase using annular dark field scanning transition electron microscopy (ADF-STEM) and image simulation.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1307 ◽  
Author(s):  
Yi Liu ◽  
Xuefei Chen ◽  
Kang Wei ◽  
Lirong Xiao ◽  
Bin Chen ◽  
...  

Twinning structures and their interfacial segregation play a key role in strengthening of magnesium alloys. Micro-steps are frequently existed in the incoherent twin boundaries, while the effect of them on interface and interfacial segregation is still not clear. In this work, we performed an atomic-scale microstructure analysis using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) to explore the effect of micro-steps on twin and its interfacial segregation in Mg-Ag alloy. Diffraction pattern of the incoherent {10 1 ¯ 1} twin shows that the misorientation has a slight tilt of 5° from its theoretical angle of 125° due to the accumulated effects of the micro-steps and their misfit dislocations in twin boundaries. Most of the micro-steps in {10 1 ¯ 1} twin boundary are in the height of 2 d ( 10 1 ¯ 1 ) and 4 d ( 10 1 ¯ 1 ) , respectively, and both of them have two types according to whether there are dislocations on the micro-steps. The twin boundary is interrupted by many micro-steps, which leads to a step-line distributed interfacial segregation. Moreover, the Ag tends to segregate to dislocation cores, which results in the interruption of interfacial segregation at the micro-steps with dislocations.


Author(s):  
M. Kelly ◽  
D.M. Bird

It is well known that strain fields can have a strong influence on the details of HREM images. This, for example, can cause problems in the analysis of edge-on interfaces between lattice mismatched materials. An interesting alternative to conventional HREM imaging has recently been advanced by Pennycook and co-workers where the intensity variation in the annular dark field (ADF) detector is monitored as a STEM probe is scanned across the specimen. It is believed that the observed atomic-resolution contrast is correlated with the intensity of the STEM probe at the atomic sites and the way in which this varies as the probe moves from cell to cell. As well as providing a directly interpretable high-resolution image, there are reasons for believing that ADF-STEM images may be less suseptible to strain than conventional HREM. This is because HREM images arise from the interference of several diffracted beams, each of which is governed by all the excited Bloch waves in the crystal.


Author(s):  
Earl J. Kirkland ◽  
Robert J. Keyse

An ultra-high resolution pole piece with a coefficient of spherical aberration Cs=0.7mm. was previously designed for a Vacuum Generators HB-501A Scanning Transmission Electron Microscope (STEM). This lens was used to produce bright field (BF) and annular dark field (ADF) images of (111) silicon with a lattice spacing of 1.92 Å. In this microscope the specimen must be loaded into the lens through the top bore (or exit bore, electrons traveling from the bottom to the top). Thus the top bore must be rather large to accommodate the specimen holder. Unfortunately, a large bore is not ideal for producing low aberrations. The old lens was thus highly asymmetrical, with an upper bore of 8.0mm. Even with this large upper bore it has not been possible to produce a tilting stage, which hampers high resolution microscopy.


Author(s):  
Raja K. Mishra

The discovery of a new class of permanent magnets based on Nd2Fe14B phase in the last decade has led to intense research and development efforts aimed at commercial exploitation of the new alloy. The material can be prepared either by rapid solidification or by powder metallurgy techniques and the resulting microstructures are very different. This paper details the microstructure of Nd-Fe-B magnets produced by melt-spinning.In melt spinning, quench rate can be varied easily by changing the rate of rotation of the quench wheel. There is an optimum quench rate when the material shows maximum magnetic hardening. For faster or slower quench rates, both coercivity and maximum energy product of the material fall off. These results can be directly related to the changes in the microstructure of the melt-spun ribbon as a function of quench rate. Figure 1 shows the microstructure of (a) an overquenched and (b) an optimally quenched ribbon. In Fig. 1(a), the material is nearly amorphous, with small nuclei of Nd2Fe14B grains visible and in Fig. 1(b) the microstructure consists of equiaxed Nd2Fe14B grains surrounded by a thin noncrystalline Nd-rich phase. Fig. 1(c) shows an annular dark field image of the intergranular phase. Nd enrichment in this phase is shown in the EDX spectra in Fig. 2.


Author(s):  
E. J. Kirkland

In a STEM an electron beam is focused into a small probe on the specimen. This probe is raster scanned across the specimen to form an image from the electrons transmitted through the specimen. The objective lens is positioned before the specimen instead of after the specimen as in a CTEM. Because the probe is focused and scanned before the specimen, accurate annular dark field (ADF) STEM image simulation is more difficult than CTEM simulation. Instead of an incident uniform plane wave, ADF-STEM simulation starts with a probe wavefunction focused at a specified position on the specimen. The wavefunction is then propagated through the specimen one atomic layer (or slice) at a time with Fresnel diffraction between slices using the multislice method. After passing through the specimen the wavefunction is diffracted onto the detector. The ADF signal for one position of the probe is formed by integrating all electrons scattered outside of an inner angle large compared with the objective aperture.


Author(s):  
Z. L. Wang ◽  
J. Bentley

The success of obtaining atomic-number-sensitive (Z-contrast) images in scanning transmission electron microscopy (STEM) has shown the feasibility of imaging composition changes at the atomic level. This type of image is formed by collecting the electrons scattered through large angles when a small probe scans across the specimen. The image contrast is determined by two scattering processes. One is the high angle elastic scattering from the nuclear sites,where ϕNe is the electron probe function centered at bp = (Xp, yp) after penetrating through the crystal; F denotes a Fourier transform operation; D is the detection function of the annular-dark-field (ADF) detector in reciprocal space u. The other process is thermal diffuse scattering (TDS), which is more important than the elastic contribution for specimens thicker than about 10 nm, and thus dominates the Z-contrast image. The TDS is an average “elastic” scattering of the electrons from crystal lattices of different thermal vibrational configurations,


Author(s):  
E D Boyes ◽  
L Hanna

A VG HB501 FEG STEM has been modified to provide track whilst tilt [TWIT] facilities for controllably tilting selected and initially randomly aligned nanometer-sized particles into the high symmetry zone-axis orientations required for microdiffraction, lattice imaging and chemical microanalysis at the unit cell level. New electronics display in alternate TV fields and effectively in parallel on split [+VTR] or adjacent externally synchronized screens, the micro-diffraction pattern from a selected area down to <1nm2 in size, together with the bright field and high angle annular dark field [HADF] STEM images of a much wider [˜1μm] area centered on the same spot. The new system makes it possible to tilt each selected and initially randomly aligned small particle into a zone axis orientation for microdiffraction, or away from it to minimize orientation effects in chemical microanalysis. Tracking of the inevitable specimen movement with tilt is controlled by the operator, with realtime [60Hz] update of the target designation in real space and the diffraction data in reciprocal space. The spot mode micro-DP and images of the surrounding area are displayed continuously. The regular motorized goniometer stage for the HB501STEM is a top entry design but the new control facilities are almost equivalent to having a stage which is eucentric with nanometric precision about both tilt axes.


Author(s):  
H.S. von Harrach ◽  
D.E. Jesson ◽  
S.J. Pennycook

Phase contrast TEM has been the leading technique for high resolution imaging of materials for many years, whilst STEM has been the principal method for high-resolution microanalysis. However, it was demonstrated many years ago that low angle dark-field STEM imaging is a priori capable of almost 50% higher point resolution than coherent bright-field imaging (i.e. phase contrast TEM or STEM). This advantage was not exploited until Pennycook developed the high-angle annular dark-field (ADF) technique which can provide an incoherent image showing both high image resolution and atomic number contrast.This paper describes the design and first results of a 300kV field-emission STEM (VG Microscopes HB603U) which has improved ADF STEM image resolution towards the 1 angstrom target. The instrument uses a cold field-emission gun, generating a 300 kV beam of up to 1 μA from an 11-stage accelerator. The beam is focussed on to the specimen by two condensers and a condenser-objective lens with a spherical aberration coefficient of 1.0 mm.


Author(s):  
R.D. Leapman ◽  
S.Q. Sun ◽  
S-L. Shi ◽  
R.A. Buchanan ◽  
S.B. Andrews

Recent advances in rapid-freezing and cryosectioning techniques coupled with use of the quantitative signals available in the scanning transmission electron microscope (STEM) can provide us with new methods for determining the water distributions of subcellular compartments. The water content is an important physiological quantity that reflects how fluid and electrolytes are regulated in the cell; it is also required to convert dry weight concentrations of ions obtained from x-ray microanalysis into the more relevant molar ionic concentrations. Here we compare the information about water concentrations from both elastic (annular dark-field) and inelastic (electron energy loss) scattering measurements.In order to utilize the elastic signal it is first necessary to increase contrast by removing the water from the cryosection. After dehydration the tissue can be digitally imaged under low-dose conditions, in the same way that STEM mass mapping of macromolecules is performed. The resulting pixel intensities are then converted into dry mass fractions by using an internal standard, e.g., the mean intensity of the whole image may be taken as representative of the bulk water content of the tissue.


Sign in / Sign up

Export Citation Format

Share Document