scholarly journals Quantifying the Urban Visual Perception of Chinese Traditional-Style Building with Street View Images

2020 ◽  
Vol 10 (17) ◽  
pp. 5963
Author(s):  
Liying Zhang ◽  
Tao Pei ◽  
Xi Wang ◽  
Mingbo Wu ◽  
Ci Song ◽  
...  

As a symbol of Chinese culture, Chinese traditional-style architecture defines the unique characteristics of Chinese cities. The visual qualities and spatial distribution of architecture represent the image of a city, which affects the psychological states of the residents and can induce positive or negative social outcomes. Hence, it is important to study the visual perception of Chinese traditional-style buildings in China. Previous works have been restricted by the lack of data sources and techniques, which were not quantitative and comprehensive. In this paper, we proposed a deep learning model for automatically predicting the presence of Chinese traditional-style buildings and developed two view indicators to quantify the pedestrians’ visual perceptions of buildings. Using this model, Chinese traditional-style buildings were automatically segmented in streetscape images within the Fifth Ring Road of Beijing and then the perception of Chinese traditional-style buildings was quantified with two view indictors. This model can also help to automatically predict the perception of Chinese traditional-style buildings for new urban regions in China, and more importantly, the two view indicators provide a new quantitative method for measuring the urban visual perception in street level, which is of great significance for the quantitative research of tourism route and urban planning.

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Dan Shi ◽  
Lixin Song

City image is the observer’s subjective impression of the city image. It is an important content of urban geography and planning research and has important guiding significance for shaping a unique urban space. Cognitive research on traditional urban imagery is mainly by means of questionnaires and image sketches. It has problems such as high cost, low update frequency, and limited data coverage, which cannot meet the needs of quantitative research on smart cities and urban economic development in the information age. With the advent of the era of big data and the development of Internet technology, there are more and more quantitative research results on smart city image cognition with the help of big data and deep learning technology. It will be a feasible way to apply it to urban image research. This article combines the development and transformation of smart cities with the transformation of urban planning and leads to an innovation in the construction of urban image cognition based on urban image, active representation data as the data source, and deep learning as the core technology. The theoretical connotation and cognitive dimension of urban imagery are expanded to establish a cognitive model of urban imagery. The city image is cognitively analyzed from three dimensions: image structure, image type, and image evaluation. Specific cities are taken as examples to verify the applicability and scientificity of the cognitive methods and models, so as to enhance the practicality and applicability of urban imagery in urban planning. At the same time, this research is used to answer the development dilemma of big data, summarize the development trend of big data, and explore the new changes that artificial intelligence brings to urban planning. The experimental results show that the model we designed efficiently evaluates the image of the city and can also effectively recognize the image of the city in the main urban area of Chongqing.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


2019 ◽  
Vol 9 (22) ◽  
pp. 4871 ◽  
Author(s):  
Quan Liu ◽  
Chen Feng ◽  
Zida Song ◽  
Joseph Louis ◽  
Jian Zhou

Earthmoving is an integral civil engineering operation of significance, and tracking its productivity requires the statistics of loads moved by dump trucks. Since current truck loads’ statistics methods are laborious, costly, and limited in application, this paper presents the framework of a novel, automated, non-contact field earthmoving quantity statistics (FEQS) for projects with large earthmoving demands that use uniform and uncovered trucks. The proposed FEQS framework utilizes field surveillance systems and adopts vision-based deep learning for full/empty-load truck classification as the core work. Since convolutional neural network (CNN) and its transfer learning (TL) forms are popular vision-based deep learning models and numerous in type, a comparison study is conducted to test the framework’s core work feasibility and evaluate the performance of different deep learning models in implementation. The comparison study involved 12 CNN or CNN-TL models in full/empty-load truck classification, and the results revealed that while several provided satisfactory performance, the VGG16-FineTune provided the optimal performance. This proved the core work feasibility of the proposed FEQS framework. Further discussion provides model choice suggestions that CNN-TL models are more feasible than CNN prototypes, and models that adopt different TL methods have advantages in either working accuracy or speed for different tasks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Steven A. Hicks ◽  
Jonas L. Isaksen ◽  
Vajira Thambawita ◽  
Jonas Ghouse ◽  
Gustav Ahlberg ◽  
...  

AbstractDeep learning-based tools may annotate and interpret medical data more quickly, consistently, and accurately than medical doctors. However, as medical doctors are ultimately responsible for clinical decision-making, any deep learning-based prediction should be accompanied by an explanation that a human can understand. We present an approach called electrocardiogram gradient class activation map (ECGradCAM), which is used to generate attention maps and explain the reasoning behind deep learning-based decision-making in ECG analysis. Attention maps may be used in the clinic to aid diagnosis, discover new medical knowledge, and identify novel features and characteristics of medical tests. In this paper, we showcase how ECGradCAM attention maps can unmask how a novel deep learning model measures both amplitudes and intervals in 12-lead electrocardiograms, and we show an example of how attention maps may be used to develop novel ECG features.


2021 ◽  
Vol 296 ◽  
pp. 126564
Author(s):  
Md Alamgir Hossain ◽  
Ripon K. Chakrabortty ◽  
Sondoss Elsawah ◽  
Michael J. Ryan

Sign in / Sign up

Export Citation Format

Share Document