scholarly journals Implementation of Auto-Hydrolysis Process for the Recovery of Antioxidants and Cellulose from Wheat Straw

2020 ◽  
Vol 10 (17) ◽  
pp. 6112 ◽  
Author(s):  
Andrea Bassani ◽  
Cecilia Fiorentini ◽  
Vellingiri Vadivel ◽  
Alessandro Moncalvo ◽  
Giorgia Spigno

Wheat straw is an easily affordable, cost-effective and natural source of antioxidants and cellulose, but its full potential is not yet utilized. In the present investigation, an auto-hydrolytic process was applied to recover both antioxidant phenolic compounds and cellulose from wheat straw. Two three-step acid/alkaline fractionation processes were applied differing for the first step: a conventional mild acid hydrolysis or an auto-hydrolysis. The liquors from the first step were analyzed for the recovery of antioxidants, while the final residues from the whole process were analyzed for cellulose yield and purity. The auto-hydrolysis process led to a higher yield in antioxidants but also in sugars (glucose and xylose) and sugar degradation products (5-HMF, 5-MF, furfural) than the acid hydrolysis process. The overall cellulose recovery (about 45% g/100 gcellulose wheat straw dm) and purity was comparable in the two processes; therefore, the auto-hydrolysis-based process could be recommended as a potentially more environmentally friendly process to recover antioxidants and cellulose from wheat straw for different applications. Finally, a first study on the optimization of hydrolysis step was provided from the point of view of improving the cellulose yield, monitoring the sugars release during both the acid hydrolysis and the auto-hydrolysis process.

BioResources ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. 1824-1827 ◽  
Author(s):  
Rui Chen ◽  
Shengdong Zhu ◽  
Cunwu Chen ◽  
Bo Cheng ◽  
Jie Chen ◽  
...  

The acid hydrolysis of lignocellulosic material (LM) is one of the most widely studied and important subprocess in the LM biorefinery. After acid hydrolysis, LM can be converted to various biofuels, biochemicals, and biomaterials through chemical or biochemical methods. However, conventional LM acid hydrolysis is not regarded as a cost-effective and environmentally-friendly process because it has drawbacks such as difficulties in acid recovery, equipment corrosion, and chemical wastes from the neutralization of acid and the removal of LM degradation products. Use of ionic liquids and solid acids during LM hydrolysis has provided potential technical tools to overcome these problems and has given new life to the LM acid hydrolysis process in the biorefinery. This editorial will discuss the role of the LM acid hydrolysis process in the LM biorefinery, provide an analysis of the conventional LM acid hydrolysis process, and briefly discuss new developments in the LM acid process.


Bioethanol ◽  
2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Pablo Alvira ◽  
María José Negro ◽  
Ignacio Ballesteros ◽  
Alberto González ◽  
Mercedes Ballesteros

AbstractDevelopment of biofuels such as lignocellulosic ethanol represents a sustainable alternative in the transport sector. Wheat straw is a promising feedstock for bioethanol production in Europe due to its large production and high carbohydrates content. In a process to produce cellulosic ethanol, previous to the enzymatic hydrolysis to obtain fermentable sugars and the subsequent fermentation, a pretreatment step to break down the recalcitrance of lignocellulose fiber is essential. In this work, a range of steam explosion pretreatment conditions were evaluated according to different parameters: sugars recovery, degradation products generation, and enzymatic hydrolysis yields. Moreover, the enzymatic hydrolysis process was also studied at high substrate loadings, since operating at high solids loading is crucial for large scale development of ethanol production. Pretreatment at 200°C - 10 min resulted in higher enzymatic hydrolysis yield (91.7%) and overall glucose yields (35.4 g glucose/100 g wheat straw) but also higher production of toxic compound. In turn, the characteristics of the pretreated wheat straw at lower severity (Log R0=3.65) correspond to 190°C and 10 min, with minimal sugars degradation and toxics formation indicated a great potential for maximizing total sugars production by using optimal enzyme combinations including accessory enzymes in the enzymatic hydrolysis step.


2017 ◽  
Vol 68 (6) ◽  
pp. 1182-1187
Author(s):  
Ilenuta Severin ◽  
Maria Vlad

This article presents the influence of the properties of the materials in the geopolymeric mixture, ground granulated blast furnace slag (GGBFS) + wheat straw ash (WSA) + uncalcined red mud (RMu), and ground granulated blast furnace slag + wheat straw ash + calcined red mud (RMc), over the microstructure and mechanical properties of the synthesised geopolymers. The activation solutions used were a NaOH solution with 8M concentration, and a solution realised from 50%wt NaOH and 50%wt Na2SiO3. The samples were analysed: from the microstructural point of view through SEM microscopy; the chemical composition was determined through EDX analysis; and the compressive strength tests was done for samples tested at 7 and 28 days, respectively. The SEM micrographies of the geopolymers have highlighted a complex structure and an variable compressive strength. Compressive strength varied from 24 MPa in the case of the same recipe obtained from 70% of GGBFS + 25% WSA +5% RMu, alkaline activated with NaOH 8M (7 days testing) to 85 MPa in the case of the recipe but replacing RMu with RMc with calcined red mud, alkaline activated with the 50%wt NaOH and 50%wt Na2SiO3 solution (28 days testing). This variation in the sense of the rise in compressive strength can be attributed to the difference in reactivity of the materials used in the recipes, the curing period, the geopolymers structure, and the presence of a lower or higher rate of pores, as well as the alkalinity and the nature of the activation solutions used.


Author(s):  
Ramesh Raghavan

This chapter presents an overview of how D&I research can be evaluated from an economic point of view. Dissemination and implementation imposes costs upon knowledge purveyors, provider organizations, public health organizations, and payers (including governments). However, whether these added costs will result in improved service delivery and, perhaps more importantly, client outcomes and improvements in population health remain as open questions. If emerging studies reveal that defined implementation strategies are more cost effective than “usual” implementation, then policymakers and service providers will need to resource these added costs of implementation in order to assure the success and sustainability of high-quality health services over the long term.


Jurnal Kimia ◽  
2016 ◽  
Author(s):  
Devi Esteria Hasianna Purba ◽  
Iryanti Eka Suprihatin ◽  
A.A.I.A. Mayun Laksmiwati

Ethanol fermented from potato peels is proposed as one alternative source of renewable energy called bioethanol. In this research bioethanol was produced through four stages namely acid hydrolysis, detoxification, fermentation and distillation. The acid hydrolysis process was carried out using sulphuric acid at 100oC for 60 minutes. The detoxification process was carried out by adding NH4OH into the hydrolyzate prior to fermentation. Distillation was performed up to 100oC and the distillate with the BP of 78-84oC was determined for its ethanol content using gas chromatography. The ethanol produced from 5 grams of dried potato peels through fermentation for 4, 5, 6, and 7 days 3.54%; 4,85%; 5,35%; and 6.15% respectively.


2021 ◽  
Vol 43 (1) ◽  
pp. 4-7
Author(s):  
Linda J. Johnston ◽  
Norma Gonzalez-Rojano ◽  
Kevin J. Wilkinson ◽  
Baoshan Xing

Abstract Nanotechnology has developed rapidly in the last two decades with significant effort focused on the development of nano-enabled materials with new or improved properties that offer solutions for current world challenges. The commercialization of products containing engineered nanomaterials (ENM) has progressed much more rapidly than the development of practical approaches to ensure their safe and sustainable use. The lack of adequate detection and characterization techniques and reproducible and validated methods for toxicological studies have been identified as major limitations. The rapid development of ENM of increasing complexity and diversity and concerns over the adequacy of existing regulations also contribute to safety concerns with these materials. The full potential of nanotechnology can only be realized when feasible, cost-effective strategies to ensure a safe-by-design approach, effective risk assessment approaches and appropriate regulatory guidelines are in place.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1063
Author(s):  
Catalina Hernández Moris ◽  
Maria Teresa Cerda Guevara ◽  
Alois Salmon ◽  
Alvaro Lorca

The energy sector in Chile demands a significant increase in renewable energy sources in the near future, and concentrated solar power (CSP) technologies are becoming increasingly competitive as compared to natural gas plants. Motivated by this, this paper presents a comparison between solar technologies such as hybrid plants and natural gas-based thermal technologies, as both technologies share several characteristics that are comparable and beneficial for the power grid. This comparison is made from an economic point of view using the Levelized Cost of Energy (LCOE) metric and in terms of the systemic benefits related to flexibility, which is very much required due to the current decarbonization scenario of Chile’s energy matrix. The results show that the LCOE of the four hybrid plant models studied is lower than the LCOE of the gas plant. A solar hybrid plant configuration composed of a photovoltaic and solar tower plant (STP) with 13 h of storage and without generation restrictions has an LCOE 53 USD/MWh, while the natural gas technology evaluated with an 85% plant factor and a variable fuel cost of 2.0 USD/MMBtu has an LCOE of 86 USD/MWh. Thus, solar hybrid plants under a particular set of conditions are shown to be more cost-effective than their closest competitor for the Chilean grid while still providing significant dispatchability and flexibility.


2008 ◽  
Vol 153 (1-3) ◽  
pp. 116-126 ◽  
Author(s):  
Luís C. Duarte ◽  
Talita Silva-Fernandes ◽  
Florbela Carvalheiro ◽  
Francisco M. Gírio

2002 ◽  
Vol 82 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Helene B Klinke ◽  
Birgitte K Ahring ◽  
Anette S Schmidt ◽  
Anne Belinda Thomsen

Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 247
Author(s):  
Miaomiao Chen ◽  
Chunhua Zhang ◽  
Zhiqing Hu ◽  
Zhuo Li ◽  
Menglin Li ◽  
...  

The JAK2 V617F mutation is a major diagnostic, therapeutic, and monitoring molecular target of Philadelphia-negative myeloproliferative neoplasms (MPNs). To date, numerous methods of detecting the JAK2 V617F mutation have been reported, but there is no gold-standard diagnostic method for clinical applications. Here, we developed and validated an efficient Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein 12a (Cas12a)-based assay to detect the JAK2 V617F mutation. Our results showed that the sensitivity of the JAK2 V617F/Cas12a fluorescence detection system was as high as 0.01%, and the JAK2 V617F/Cas12a lateral flow strip assay could unambiguously detect as low as 0.5% of the JAK2 V617F mutation, which was much higher than the sensitivity required for clinical application. The minimum detectable concentration of genomic DNA achieved was 0.01 ng/μL (~5 aM, ~3 copies/μL). In addition, the whole process only took about 1.5 h, and the cost of an individual test was much lower than that of the current assays. Thus, our methods can be applied to detect the JAK2 V617F mutation, and they are highly sensitive, rapid, cost-effective, and convenient.


Sign in / Sign up

Export Citation Format

Share Document