scholarly journals Energy-Efficient Hip Joint Offsets in Humanoid Robot via Taguchi Method and Bio-inspired Analysis

2020 ◽  
Vol 10 (20) ◽  
pp. 7287
Author(s):  
Jihun Kim ◽  
Jaeha Yang ◽  
Seung Tae Yang ◽  
Yonghwan Oh ◽  
Giuk Lee

Although previous research has improved the energy efficiency of humanoid robots to increase mobility, no study has considered the offset between hip joints to this end. Here, we optimized the offsets of hip joints in humanoid robots via the Taguchi method to maximize energy efficiency. During optimization, the offsets between hip joints were selected as control factors, and the sum of the root-mean-square power consumption from three actuated hip joints was set as the objective function. We analyzed the power consumption of a humanoid robot model implemented in physics simulation software. As the Taguchi method was originally devised for robust optimization, we selected turning, forward, backward, and sideways walking motions as noise factors. Through two optimization stages, we obtained near-optimal results for the humanoid hip joint offsets. We validated the results by comparing the root-mean-square (RMS) power consumption of the original and optimized humanoid models, finding that the RMS power consumption was reduced by more than 25% in the target motions. We explored the reason for the reduction of power consumption through bio-inspired analysis from human gait mechanics. As the distance between the left and right hip joints in the frontal plane became narrower, the amplitude of the sway motion of the upper body was reduced. We found that the reduced sway motion of the upper body of the optimized joint configuration was effective in improving energy efficiency, similar to the influence of the pathway of the body’s center of gravity (COG) on human walking efficiency.

2009 ◽  
Vol 06 (04) ◽  
pp. 565-584 ◽  
Author(s):  
HAJIME SAKAMOTO ◽  
HARUHIRO KATAYOSE ◽  
KOJI MIYAZAKI ◽  
RYOHEI NAKATSU

This paper proposes a method of giving humanoid robots a natural humanlike walk, which we call the extended-knee walk. Unlike the bent-knee walk of most humanoid robots to date, this walk includes a period in which the knee is fully extended. A parallel mechanism is used in the legs and a method of calculating the walk trajectory copes with the difficulty of the singularity in achieving a humanlike walk. The advantages of this walk were verified from two aspects: good visual appearance and good energy efficiency. An experiment comparing the trajectories of the knee angle during walking showed that the walking style produced by the proposed method is more humanlike than the usual walking style of other humanoid robots. The energy efficiency was verified through power consumption and motor temperature measurements and the possibilities for practical use of this method are discussed with reference to the results of the worldwide soccer competition RoboCup 2008.


Robotica ◽  
2014 ◽  
Vol 33 (1) ◽  
pp. 107-126 ◽  
Author(s):  
Ronnie Joseph Wong ◽  
James Andrew Smith

SUMMARYWhile Sit-to-Stand and Stand-to-Sit are routine activities and are crucial pre-requisites to walking and running their underlying dynamics are poorly understood. Furthermore, the potential for using these movements to regenerate energy in energy-sensitive devices such as orthoses, prostheses and humanoid robots has never been examined. Insights in this domain can lead to more energy-efficient prosthesis, orthosis and humanoid robot designs.OBJECTIVES: The objectives are two-fold: first, to determine how much energy can be regenerated during standard movements related to transitions between sitting and standing on a scale humanoid model and second, to determine if the chosen actuator could produce better results if the gear ratio were modified. This manuscript's main contribution to the literature is by showing which joint provides the most regenerative effect during transitions between sitting and standing.MODEL DESIGN AND IMPLEMENTATION: Joint trajectories from existing biomechanics trials of sitting and standing transitions were fed into a 1/10 scale model of a humanoid robot. The robot model, developed in MapleSim, is comprised of standard and off-the-shelf subcomponents, including amplifier, NiMH battery and Robotis Dynamixel RX-28 actuators.RESULTS: Using the RX-28 actuator, the ankle, knee and hip joints all show a degree of regenerative effects, the hip demonstrates the most dramatic levels during the transition from standing to sitting. This contrasts with recent publications which show that the knee has the most important regenerative effects during walking and running. It is also found that for under 3 degree trajectory error the regenerative effect is best for all joints when the gear ratio is increased from the RX-28's 193:1 value to a value of approximately 760:1 for the ankle, 630:1 for the knee and 600:1 for the hip.CONCLUSIONS: During transitions between sitting and standing the greatest potential for regeneration occurs in the hips. Therefore, systems designed to implement regenerative effects between sitting and standing need to include subsystems at the hip for maximum regenerative effects.


Author(s):  
Bryce Lee ◽  
Coleman Knabe ◽  
Viktor Orekhov ◽  
Dennis Hong

For a humanoid robot to have the versatility of humans, it needs to have similar motion capabilities. This paper presents the design of the hip joint of the Tactical Hazardous Operations Robot (THOR), which was created to perform disaster response duties in human-structured environments. The lower body of THOR was designed to have a similar range of motion to the average human. To accommodate the large range of motion requirements of the hip, it was divided into a parallel-actuated universal joint and a linkage-driven pin joint. The yaw and roll degrees of freedom are driven cooperatively by a pair of parallel series elastic linear actuators to provide high joint torques and low leg inertia. In yaw, the left hip can produce a peak of 115.02 [Nm] of torque with a range of motion of −20° to 45°. In roll, it can produce a peak of 174.72 [Nm] of torque with a range of motion of −30° to 45°. The pitch degree of freedom uses a Hoeken’s linkage mechanism to produce 100 [Nm] of torque with a range of motion of −120° to 30°.


Author(s):  
Fayong Guo ◽  
Tao Mei ◽  
Minzhou Luo ◽  
Marco Ceccarelli ◽  
Ziyi Zhao ◽  
...  

Purpose – Humanoid robots should have the ability of walking in complex environment and overcoming large obstacles in rescue mission. Previous research mainly discusses the problem of humanoid robots stepping over or on/off one obstacle statically or dynamically. As an extreme case, this paper aims to demonstrate how the robots can step over two large obstacles continuously. Design/methodology/approach – The robot model uses linear inverted pendulum (LIP) model. The motion planning procedure includes feasibility analysis with constraints, footprints planning, legs trajectory planning with collision-free constraint, foot trajectory adapter and upper body motion planning. Findings – The motion planning with the motion constraints is a key problem, which can be considered as global optimization issue with collision-free constraint, kinematic limits and balance constraint. With the given obstacles, the robot first needs to determine whether it can achieve stepping over, if feasible, and then the robot gets the motion trajectory for the legs, waist and upper body using consecutive obstacles stepping over planning algorithm which is presented in this paper. Originality/value – The consecutive stepping over problem is proposed in this paper. First, the paper defines two consecutive stepping over conditions, sparse stepping over (SSO) and tight stepping over (TSO). Then, a novel feasibility analysis method with condition (SSO/TSO) decision criterion is proposed for consecutive obstacles stepping over. The feasibility analysis method’s output is walking parameters with obstacles’ information. Furthermore, a modified legs trajectory planning method with center of mass trajectory compensation using upper body motion is proposed. Finally, simulations and experiments for SSO and TSO are carried out by using the XT-I humanoid robot platform with the aim to verify the validity and feasibility of the novel methods proposed in this paper.


Author(s):  
Thomas Howard ◽  
Laurent Berviller ◽  
Patrick Zattarin ◽  
Gabriel Abba

The objective of this work is to design and to make a part of a humanoid robot, named HYDROÏD. The keynote is a development of a self-sufficient robot by minimizing energy inputs required for its activity. Currently humanoid robots have a power/weight ratio lower than human, as a consequence a limited autonomy. In this work we propose an innovative knee structure in order to reduce friction, and as a result, increase energy efficiency. In classic knee architectures, the rolling elements are balls in bearings with relatively small curvature radii. Here, the idea is to increase this curvature radius to minimize rolling friction. This new joint is realized by rolling between two pieces (femur and tibia) linked by ligaments, and thus get an architecture similar to that of a human knee. As such, the contact is made by rolling movement without sliding between two cylindrical surfaces with circular section, and for which we need find an innovative actuation mechanism. To take advantage of energy savings achieved, we must optimize the mass distribution so as to achieve the smallest global inertia of the mechanical system. In this work we propose various technological solutions for actuation mechanisms. A comparative study is performed between the different technological choices for actuator (cylinder or rotary actuator) and for transmission (connecting crank arm, belt, gearing, etc.). Of course, this new structure must be in accordance with specifications for the knee about size and weight, as well as amplitude and speed rotation of joint. In this work, our choice is to use electric actuators. These different solutions are evaluated according several criteria such as inertial characteristic (mass and inertia matrix), overall size, energy efficiency and the complexity of the system (number of used pieces). Initially, solutions with pulley and belt or rotary actuators and cables seem to have best performance those other systems with connecting crank arm or gearing. Results should be confirmed from a more accurate determination of transmission efficiency. For prospect, the future works will be about optimization of pieces geometry, and in particular as study the gain due to using curvilinear surfaces with elliptic section. Calculation of stresses in the materials by finite elements will provide more information about optimization of dimensions and shapes. Ultimately, energetic gains obtained with this architecture should be confirm through experimental tests.


2014 ◽  
Vol 30 (4) ◽  
pp. 563-573 ◽  
Author(s):  
Yoichi Iino ◽  
Atsushi Fukushima ◽  
Takeji Kojima

The purpose of this study was to investigate the relevance of hip joint angles to the production of the pelvic rotation torque in fast-pitch softball hitting and to examine the effect of ball height on this production. Thirteen advanced female softball players hit stationary balls at three different heights: high, middle, and low. The pelvic rotation torque, defined as the torque acting on the pelvis through the hip joints about the pelvic superior–inferior axis, was determined from the kinematic and force plate data using inverse dynamics. Irrespective of the ball heights, the rear hip extension, rear hip external rotation, front hip adduction, and front hip flexion torques contributed to the production of pelvic rotation torque. Although the contributions of the adduction and external rotation torques at each hip joint were significantly different among the ball heights, the contributions of the front and rear hip joint torques were similar among the three ball heights owing to cancelation of the two torque components. The timings of the peaks of the hip joint torque components were significantly different, suggesting that softball hitters may need to adjust the timings of the torque exertions fairly precisely to rotate the upper body effectively.


Humanoid robots are used fortraining purposes, personal assistance, understanding the human body structure and behavior, health care field, entertainment field, military purposes, space explorations, etc. Kinematic analysis plays a crucial role in the development of a humanoid robot. This paper presents the kinematic, workspace and static analysis of a Humanoid upper body robot. The forward kinematic model is obtained by using Screw theory. Screw theory provides the complete description of the system than the Denavit- Hartenberg (DH) method. Screw theory decreases the chances of occurrences of singularities inside the workspace. The joint angles in the upper body are obtained by using cubic spline trajectory method. The proposed torso and arm design can imitate the human body postures. The humanoid robot is designed with 3 Dofs in the torso, 2 Dofs in the neck and 5 Dofs in each arm. The two arms are designed with identical joints.


Robotica ◽  
2016 ◽  
Vol 35 (11) ◽  
pp. 2099-2121 ◽  
Author(s):  
Majid Sadedel ◽  
Aghil Yousefi-Koma ◽  
Majid Khadiv ◽  
Mohhamad Mahdavian

SUMMARYAdding active toe joints to a humanoid robot structure has lots of difficulties such as mounting a small motor and an encoder on the robot feet. Conversely, adding passive toe joints is simple, since it only consists of a spring and a damper. Due to lots of benefits of implementing passive toe joints, mentioned in the literature, the goal of this study is to add passive toe joints to the SURENA III humanoid robot which was designed and fabricated at the Center of Advanced Systems and Technologies (CAST), University of Tehran. To this end, a simple passive toe joint is designed and fabricated, at first. Then, stiffness and damping coefficients are calculated using a vision-based measurement. Afterwards, a gait planning routine for humanoid robots equipped with passive toe joints is implemented. The tip-over stability of the gait is studied, considering the vibration of the passive toe joints in swing phases. The multi-body dynamics of the robot equipped with passive toe joints are presented using the Lagrange approach. Furthermore, system identification routine is adopted to model the dynamic behaviors of the power transmission system. By adding the calculated actuating torques for these two models, the whole dynamic model of the robot is computed. Finally, the performance of the proposed approach is evaluated by several simulations and experimental results. Results show that using passive toe joints reduces energy consumption of ankle and knee joints by 15.3% and 9.0%, respectively. Moreover, with relatively large values of stiffness coefficients, the required torque and power of the knee and hip joints during heel-off motion reduces as the ankle joint torque and power increases.


2005 ◽  
Vol 02 (01) ◽  
pp. 81-104 ◽  
Author(s):  
JIMMY OR ◽  
ATSUO TAKANISHI

Research on humanoid robotics has up to now been focused on the control of manipulators and walking machines. The contributions of body torso torwards daily activities have been neglected. To address this deficient area of humanoid robotics research, we developed a unique flexible spine biped humanoid robot. Inspired by the rhythmic and wave-like motions commonly seen in swimming lamprey and in belly dancing, we investigated the possibility of controlling the spine of our robot using the lamprey central pattern generator (CPG). Experimental results show that our robot is capable of mimicing both basic and complex spine motions with fewer actuators than the human spine and using only three input parameters (global and extra excitations from the brainstem, plane of actions). Our work suggests that the CPG is a suitable controller for humanoid spine motions because it can control a high degree of freedom mechanical spine with minimized control parameters. No complex computations of spine trajectories are involved. Furthermore, since our robot can move its upper body dynamically while standing and without external supports, it may be used as a prototype for the next generation of humanoid robots.


Author(s):  
Giorgio Metta

This chapter outlines a number of research lines that, starting from the observation of nature, attempt to mimic human behavior in humanoid robots. Humanoid robotics is one of the most exciting proving grounds for the development of biologically inspired hardware and software—machines that try to recreate billions of years of evolution with some of the abilities and characteristics of living beings. Humanoids could be especially useful for their ability to “live” in human-populated environments, occupying the same physical space as people and using tools that have been designed for people. Natural human–robot interaction is also an important facet of humanoid research. Finally, learning and adapting from experience, the hallmark of human intelligence, may require some approximation to the human body in order to attain similar capacities to humans. This chapter focuses particularly on compliant actuation, soft robotics, biomimetic robot vision, robot touch, and brain-inspired motor control in the context of the iCub humanoid robot.


Sign in / Sign up

Export Citation Format

Share Document