scholarly journals Influence of Rotational Stiffness Modeling on the Joint Behavior of Quasi-Rectangular Shield Tunnel Linings

2020 ◽  
Vol 10 (23) ◽  
pp. 8396 ◽  
Author(s):  
Weixi Zhang ◽  
Wouter De Corte ◽  
Xian Liu ◽  
Luc Taerwe

A beam-spring model with constant rotational stiffness is a practical tool for the prediction of the general deformations and bending moments in circular tunnel linings. However, in reality, the rotational stiffness of a segmental joint is not constant, due to nonlinear deformations and local yielding in the vicinity of the joint. These are a result of the specific geometry at the joint, which is related to water-tightness measures and buildability issues. For quasi-rectangular tunnels this nonlinearity should not be neglected, as the bending component in the lining is significantly larger compared to circular linings. To date, there are only few studies that have investigated a calculation method for consideration of the joint’s nonlinear moment-axial force and shear-axial force interaction behavior and its consequences on the calculated lining behavior. In this paper, an iterative incremental method is proposed to tackle this issue, based on rotational stiffness curves derived from 3D nonlinear finite element modelling of the joints, and substantiated by testing. The significance of the variable rotational stiffness is highlighted through a comparison with results based on a constant stiffness assumption. Further, using the proposed calculation method, the effects of the circumferential joints, the bending moment transmission and several other parameters on the full-ring behavior of quasi-rectangular tunnels are discussed for a wide interval of design parameters. The results provide some new insights into the behavior of this non-traditional tunnel type. Although the presented results are related to specific overall and local geometries, the presented method is considered to be useful for the design of other special tunnel geometries.

2011 ◽  
Vol 243-249 ◽  
pp. 3468-3471 ◽  
Author(s):  
Shi Min Wang ◽  
Chuan He ◽  
Lei Lei Lan ◽  
Si Jin Liu

With the development and utilization of underground space and the construction of large quantities of shield tunnels, the phenomenon that shield tunnel go through the existing buildings at close quarters is in the rise. The stiffness mismatch between shield tunnels and existing buildings has a significant impact on the deformation and stress of the connection part. In order to explore the affection on the shield tunnel from the existing buildings while the shield tunnel crosses the later, taken the shield tunnel crossing Wuchang ultra-deep ventilation shaft in Wuhan subway as an example, the influence to the shield tunnel by the existing building is studied. In the sphere of influence, the closer to the ventilation shaft enclosure structures, the more notable the uneven deformation of the tunnel segment structure would be; the closer to the rigid structure, the smaller the transverse bending moment would be; the nearer to the rigid structure, the greater the horizontal axial force, vertical axial force and vertical bending moment would be. The impact on deformation and load-carrying capacity from ventilation shaft enclosure structure on shield tunnel segment weakens sharply by the increasing of their distance.


2020 ◽  
Vol 92 (6) ◽  
pp. 13-25
Author(s):  
Vl.I. KOLCHUNOV ◽  
◽  
A.I. DEMYANOV ◽  
M.M. MIHAILOV ◽  
◽  
...  

The article offers a method and program for experimental studies of reinforced concrete structures with cross-shaped spatial crack under torsion with bending, the main purpose of which is to check the design assumptions and experimental determination of the design parameters of the proposed calculation method. The conducted experimental studies provide an opportunity to test the proposed calculation apparatus and clarify the regularities for determining deflections, angles of rotation of extreme sections, and stresses in the compressed zone of concrete. For analysis, the article presents a typical experimental scheme for the formation and development of cracks in the form of a sweep, as well as characteristic graphs of the dependence of the angles of rotation of end sections.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2116
Author(s):  
Yue Xiao ◽  
Limin Tang ◽  
Jiawei Xie

There are great uncertainties in road design parameters, and the traditional point numerical calculation results cannot reflect the complexity of the actual project well. Additionally, the calculation method of road design theory based on interval analysis is more difficult in the use of uncertain design parameters. In order to simplify the calculation process of the interval parameters in the road design theory, the asphalt pavement design is taken as the analysis object, and the permanent deformation of the asphalt mixture is simplified by combining the interval analysis theory. Considering the uncertainty of the design parameters, the data with boundaries but uncertain size are expressed in intervals, and then the interval calculation formula for the permanent deformation of the asphalt mixture is derived, and the interval results are obtained. In order to avoid the dependence of interval calculation on the computer code, according to the interval calculation rule, the interval calculation method with the upper and lower end point values as point operations is proposed. In order to overcome the contradiction between interval expansion results and engineering applications, by splitting the multi-interval variable formulas, the interval variable weights are reasonably given, and the synthesis of each single interval result realizes a simplified calculation based on interval variable weight assignment. The analysis results show that the interval calculation method based on the point operation rule is accurate and reliable, and the simplified method based on the interval variable weight assignment is effective and feasible. The simplified interval calculation method proposed in this paper provides a reference for the interval application of road design theory.


2021 ◽  
pp. 136943322110015
Author(s):  
Ting Guo ◽  
Na Yang ◽  
Huichun Yan ◽  
Fan Bai

This study aimed to investigate the moment carrying behavior of typical Tibetan timber beam-column joints under monotonic vertical static load and also evaluate the influence of length ratio of Gongmu to beam (LRGB) and dowels layout on the structural performance of the joint. Six full-scale specimens were fabricated with same construction but different Gongmu length and dowels position. The moment carrying performance of beam-column joints in terms of failure mode, moment resistance, and rotational stiffness of joints were obtained via monotonic loading tests. Test results indicated that all joints are characterized by compressive failure perpendicular to grain of Ludou. Additionally, it was found that greater LRGB leads to greater initial rotational stiffness and maximum moment of the joint by an increase of restraint length for beam end; however, offsetting dowels toward column resulted smaller stiffness and ultimate bending moment of joints, particularly, offsetting Beam-Gongmu dowels toward column changed the moment-rotation curve pattern of the beam-column joint, accompanied by a hardening stiffness at last phase. Furthermore, a simplified trilinear model was proposed to represent the moment-rotation relationship of the typical Tibetan timber beam-column joint.


2012 ◽  
Vol 238 ◽  
pp. 787-790
Author(s):  
Zhong Ming Su ◽  
Rui Liu

According to the elastic-plastic theory, the analytical formula of plastic zone radius is established for circular tunnel in its excavation and support, and the effect of anchor support is verified based on the radius of plastic zone from the perspective of measured axial force. The influences to plastic zone by the variations of mechanical parameters and resistance of support are quantitatively analyzed. The result is of great significance to the monitoring measurement and the dynamic design and construction of tunnel.


2016 ◽  
Vol 129 ◽  
pp. 67-80 ◽  
Author(s):  
Pedro Dias Simão ◽  
Helena Barros ◽  
Carla Costa Ferreira ◽  
Tatiana Marques

2011 ◽  
Vol 255-260 ◽  
pp. 718-721
Author(s):  
Z.Y. Wang ◽  
Q.Y. Wang

Problems regarding the combined axial force and bending moment for the behaviour of semi-rigid steel joints under service loading have been recognized in recent studies. As an extended research on the cyclic behaviour of a bolted endplate joint, this study is performed relating to the contribution of column axial force on the cyclic behaviour of the joint. Using finite element analysis, the deteriorations of the joint performance have been evaluated. The preliminary parametric study of the joint is conducted with the consideration of flexibility of the column flange. The column axial force was observed to significantly influence the joint behaviour when the bending of the column flange dominates the failure modes. The reductions of moment resistance predicted by numerical analysis have been compared with codified suggestions. Comments have been made for further consideration of the influence of column axial load in seismic design of bolted endplate joints.


Author(s):  
Yanping Yao ◽  
Ming-Wan Lu

The criteria of piping seismic design based on linear elastic analysis has been proved to be conservative, which is mainly because the influence of plastic deformation on piping dynamic response is neglected. In the present paper, a pipe under seismic excitation is simplified as an beam with tubular cross section subjected to steady axial force and fully reversed cyclic bending moment, and the elastic-plastic behavior of the pipe is studied. Various behavior of the pipe under different combinations of axial force and cyclic bending moment is discussed and the boundary curve equations between them are obtained. Also the load regime diagram for a pipe which is formed by the boundary curve equations in the loading plane is given, from which the elastic-plastic behavior of the pipe can be determined directly.


Sign in / Sign up

Export Citation Format

Share Document