scholarly journals A Systematic Comparative Study of the Toxicity of Semiconductor and Graphitic Carbon-Based Quantum Dots Using In Vitro Cell Models

2020 ◽  
Vol 10 (24) ◽  
pp. 8845
Author(s):  
Maria Carmen Navarro-Ruiz ◽  
Angelina Cayuela ◽  
María Laura Soriano ◽  
Rocio Guzmán-Ruiz ◽  
Maria M. Malagón ◽  
...  

A comparative, fully parallel study of nanoparticles (NPs) toxicity by in vitro cell viability is shown looking for reliable comparability of nanotoxicological results, a well-recognized bottleneck in the context. This procedure is suitable to compare toxicity of similar NPs, as well as the influence on toxicity of the size, surface, and other characteristics. As a case of study, semiconductor (SQDs) and graphitic-carbon quantum dots (CQDs) with identical surface groups and size were evaluated. All experiments were conducted at same conditions, involving two types of cells (mouse fibroblasts (3T3-L1) and carcinoma human hepatocellular cells (HepG2)) and different extracellular components (in the absence or presence of fetal bovine serum (FBS)). Cell viability demonstrated the excellent biocompatibility of CQDs compared to SQDs, which caused higher percentage of cell death at lower concentrations, as predicted but never clearly demonstrated. However, our comparative studies established that the toxicity of SQDs and CQDs are cellular type-dependent, and the absence or presence of serum proteins reduces the minimal concentration necessary of NPs to produce toxicity.

2005 ◽  
Vol 284-286 ◽  
pp. 815-818
Author(s):  
Sang Bae Lee ◽  
Se Ho Lee ◽  
D.H. Kim ◽  
Doug Youn Lee ◽  
Yong Keun Lee ◽  
...  

The purpose of this study was to evaluate the cytotoxicity of alginate-encapsulting ferrite particles in vitro. Various ferrite particles such as Ba-ferrite, Sr-ferrite, Co-ferrite, Co/Ni-ferrite were prepared by sol-gel process. Ferrite particles were encapsulated via calcium alginate process with different alginate contents ranged from 10 to 100 wt%. Mouse-fibroblastic NCTC L-929 cells were cultured in RPMI-1640 medium with 10% fetal bovine serum. The alginate-encapsulating ferrites were extracted in 5 ml of distilled water under pH 6.5 at 121°C for 1 h in accordance with ISO 10993-12. In vitro cytotoxicity was evaluated by WST-1. The results of this study indicated that the alginate-encapsulting ferrite particles affected cell viability by increasing alginate contents. Especially, alginate-encapsulating process were enhanced cell viability of ferrites such as Sr-ferrite, Co/Ni-ferrite, and Ba-Ferrite when alginate content was 10 wt%.


2006 ◽  
Vol 65 (2) ◽  
pp. 374-386 ◽  
Author(s):  
Misae Suzuki ◽  
Koji Misumi ◽  
Manabu Ozawa ◽  
Junko Noguchi ◽  
Hiroyuki Kaneko ◽  
...  

2011 ◽  
Vol 57 (4) ◽  
pp. 356-361
Author(s):  
Ikuo Nishigaki ◽  
Gowri Rangasamy Gunassekaran ◽  
Panjan Nagappan Venkatesan ◽  
Mandupal Chaco Sabu ◽  
Sabu Priya ◽  
...  

2018 ◽  
Vol 19 (11) ◽  
pp. 3538 ◽  
Author(s):  
Brandon Lehrich ◽  
Yaxuan Liang ◽  
Pooya Khosravi ◽  
Howard Federoff ◽  
Massimo Fiandaca

It is known that culture media (CM) promotes cellular growth, adhesion, and protects explanted primary brain cells from in vitro stresses. The fetal bovine serum (FBS) supplement used in most CM, however, contains significant quantities of extracellular vesicles (EVs) that confound quantitative and qualitative analyses from the EVs produced by the cultured cells. We quantitatively tested the ability of common FBS EV-depletion protocols to remove exogenous EVs from FBS-supplemented CM and evaluated the influence such methods have on primary astrocyte culture growth and viability. We assessed two methodologies utilized for FBS EV removal prior to adding to CM: (1) an 18-h ultracentrifugation (UC); and (2) a commercial EV-depleted FBS (Exo-FBS™). Our analysis demonstrated that Exo-FBS™ CM provided the largest depletion (75%) of total FBS EVs, while still providing 6.92 × 109 ± 1.39 × 108 EVs/mL. In addition, both UC and Exo-FBS™ CM resulted in poor primary astrocyte cell growth and viability in culture. The two common FBS EV-depletion methods investigated, therefore, not only contaminate in vitro primary cell-derived EV analyses, but also provide a suboptimal environment for primary astrocyte cell growth and viability. It appears likely that future CM optimization, using a serum-free alternative, might be required to advance analyses of cell-specific EVs isolated in vitro.


2021 ◽  
Author(s):  
Xenia Dolde ◽  
Christiaan Karreman ◽  
Marianne Wiechers ◽  
Stefan Schildknecht ◽  
Marcel Leist

Fetal bovine serum (FBS) is the only known stimulus for migration of human neural crest cells (NCCs). Non-animal chemoattractants are desirable for the optimization of chemotaxis assays to be incorporated in a test battery for reproductive and developmental toxicity. We confirmed here in an optimized transwell assay that FBS triggers directed migration along a concentration gradient. The responsible factor was found to be a protein in the 30-100 kDa size range. In a targeted approach, we tested a large panel of serum constituents known to be chemotactic for NCCs in animal models (e.g. VEGF, PDGF, FGF, SDF-1/CXCL12, ephrins, endothelin, Wnt, BMPs). None of the corresponding human proteins showed any effect in our chemotaxis assays based on human NCCs. We then examined in a broad screening approach, whether human cells would produce any factor able to trigger NCC migration. We found that HepG2 hepatoma cells produced chemotaxis-triggering activity (CTA). Using chromatographic methods and by employing the NCC chemotaxis test as bioassay, the responsible protein was enriched by up to 5000-fold. We also explored human serum and platelets as direct source, independent of any cell culture manipulations. A CTA was enriched from platelet lysates several thousand-fold. Its temperature and protease-sensitivity suggested a protein component. The capacity of this factor to trigger chemotaxis was confirmed by single-cell video-tracking analysis of migrating NCCs. The human CTA characterized here may be employed in the future for the setup of assays testing for the disturbance of directed NCC migration by toxicants.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1150-1157 ◽  
Author(s):  
AR Migliaccio ◽  
G Migliaccio ◽  
M Brice ◽  
P Constantoulakis ◽  
G Stamatoyannopoulos ◽  
...  

Abstract We have studied the effects of recombinant hematopoietic growth factors, granulocyte-macrophage colony-stimulating factor (GM-CSF) and/or interleukin-3 (IL-3) on the globin program of adult human erythroid progenitors (BFUe) stimulated to terminal differentiation by erythropoietin under fetal bovine serum (FBS)-supplemented or FBS- deprived culture conditions. Fetal globin production by BFUe-derived erythroblasts was assessed at the protein and mRNA level and its cellular distribution was evaluated by immunofluorescence. Although hemoglobinization and maturation of BFUe-derived erythroblasts was by and large comparable in FBS-replete versus FBS-deprived cultures, the latter had significantly less (up to 20-fold) gamma-globin and gamma- globin mRNA levels. Reduced gamma-globin in serum-deprived cultures was also reflected by a smaller proportion of erythroblasts with detectable gamma-globin by immunofluorescence. Erythroid bursts induced by either GM-CSF or IL-3 produced similar levels of gamma-globin both in FBS- supplemented and in FBS-deprived cultures. These results, obtained even in cultures of highly enriched BFUe, suggest that GM-CSF and IL-3, although they significantly increase the number and size of erythroid bursts, do not by themselves exert a direct influence on the level of fetal globin synthesis. By contrast, factor(s) present in FBS appear to exert a dominant influence on fetal globin synthesis in vitro. Although FBS-deprived conditions appear to largely abrogate the in vitro activation of fetal hemoglobin (Hb F) in normal samples, they do support increased Hb F production in samples from patients with hereditary persistence of fetal hemoglobin or from cord blood.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 139 ◽  
Author(s):  
Nicolas Capelli ◽  
Martine Dubois ◽  
Mélanie Pucelle ◽  
Isabelle Da Silva ◽  
Sébastien Lhomme ◽  
...  

Hepatitis E virus (HEV) is a major concern in public health worldwide. Infections with HEV genotypes 3, 4, or 7 can lead to chronic hepatitis while genotype 1 infections can trigger severe hepatitis in pregnant women. Infections with all genotypes can worsen chronic liver diseases. As virions are lipid-associated in blood and naked in feces, efficient methods of propagating HEV clinical strains in vitro and evaluating the infectivity of both HEV forms are needed. We evaluated the spread of clinical strains of HEV genotypes 1 (HEV1) and 3 (HEV3) by quantifying viral RNA in culture supernatants and cell lysates. Infectivity was determined by endpoint dilution and calculation of the tissue culture infectious dose 50 (TCID50). An enhanced HEV production could be obtained varying the composition of the medium, including fetal bovine serum (FBS) and dimethylsulfoxide (DMSO) content. This increased TCID50 from 10 to 100-fold and allowed us to quantify HEV1 infectivity. These optimized methods for propagating and measuring HEV infectivity could be applied to health safety processes and will be useful for testing new antiviral drugs.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3667
Author(s):  
Yasuyuki Fujii ◽  
Yoshitomo Suhara ◽  
Yusuke Sukikara ◽  
Tomohiro Teshima ◽  
Yoshihisa Hirota ◽  
...  

Flavan-3-ols (FLs), specifically catechin and its oligomer B-type procyanidins, are suggested to potently bind to bovine serum albumin (BSA). We examined the interaction between BSA and FLs by fluorescence quenching and found the following order of binding activities to BSA: cinnamtannin A2 (A2; tetramer) > procyanidin C1 (C1; trimer) ≈ procyanidin B2 (B2, dimer) > (−)epicatechin (EC, monomer). Docking simulations between BSA and each compound at the binding site showed that the calculated binding energies were consistent with the results of our experimental assay. FLs exerted cytotoxicity at 1000 μg/mL in F11 cell culture with fetal bovine serum containing BSA. In culture containing serum-free medium, FLs exhibited significant cell proliferation at 10−4 μg/mL and cytotoxicity was observed at concentrations greater than 10 μg/mL. Results of this study suggest that interactions between polyphenols and BSA should be taken into account when evaluating procyanidin in an in vitro cell culture system.


Sign in / Sign up

Export Citation Format

Share Document