scholarly journals Detection of Movement Intention for Operating Methods of Serious Games

2021 ◽  
Vol 11 (2) ◽  
pp. 883
Author(s):  
Jung-Hyun Park ◽  
Ho-Sang Moon ◽  
Hyunggun Kim ◽  
Sung-Taek Chung

In many post-stroke cases, patients show dysfunctions in movement, cognition, sense, and language, depending on the damaged area of the brain. Active and repetitive physical rehabilitation centered on the stroke-affected side is essential for effective and rapid neurological recovery of upper extremity dysfunction due to hemiplegia. A symmetric upper extremity trainer is utilized to assist the patient body, depending upon the degree of hemiplegia. In this study, we developed a novel balance handle as a symmetric upper extremity trainer capable of extension, flexion, pronation, and supination of the upper extremity. We collected the surface electromyogram (sEMG) signal data while the subjects were playing a serious game and recorded the electroencephalogram (EEG) signal data while the subjects were performing basic movements with the balance handle, to analyze the effectiveness of the device as an assistive tool for rehabilitation. The triceps brachii were activated during the extension movements, whereas the biceps brachii and deltoid muscles were activated during the flexion movements. With the balance handle, the peak event-related desynchronization (ERD) values were relatively lower while showing higher peak event-related synchronization (ERS) values compared to other types of operating methods, such as hand gripping and gamepad operation. Movement intention of tilting the balance handle for the α and β waves was clearly distinguished from the other tasks. These data demonstrated the potential of various applications using the developed proof-of-concept upper extremity trainer to bring out an excellent rehabilitative effect not only through muscle growth but also via identification of large movement intentions inducing brain activation exercise.

2020 ◽  
Vol 28 (2) ◽  
Author(s):  
David Uher ◽  
Gregory Anoufriev ◽  
Michael E. Toczko

Background: Technology is prevalent in almost every aspect of life, from handheld phones to computers. Increases in cervical flexion can cause a strain on the neck and muscles of the upper extremity. Objective: To examine the effect of 30 minutes of cervical flexion at 45 degrees. It was hypothesized that muscle strength will decrease after flexion, and there would be no significant differences between dominant and nondominant arms or genders. Study design: Twenty-four participants (12 male, 12 female) (n = 24; height = 173.1 + 9.3 cm; weight = 73.33 + 22.58kg) were measured before and after cervical flexion using a MicroFET2 Hand Held Digital Muscle Tester to test the middle deltoid, biceps brachii, and triceps brachii of each arm. Results: Compared to pre-measures significant differences were found in both middle deltoids and both biceps brachii, but not in either triceps brachii (p < 0.05). Overall no limited significant differences were found between genders of muscles of either arm. Significant differences (p < 0.05) were found in the dominant biceps brachii, non-dominant biceps brachii, dominant triceps brachii, dominant deltoid, and non-dominant deltoid. Conclusion: These results suggest that a normal daily degree of cervical flexion will decrease some upper extremity strength over the course of 30 minutes.


1981 ◽  
Vol 94 (1) ◽  
pp. 15-42 ◽  
Author(s):  
G. E. Goslow ◽  
H. J. Seeherman ◽  
C. R. Taylor ◽  
M. N. McCutchin ◽  
N. C. Heglund

Electrical activity and length changes of 11 muscles of the fore- and hind- limbs of dogs walking, running, and galloping on a treadmill, were measured as a function of forward speed and gait. Our purpose was to find out whether the activity patterns of the major limb muscles were consistent with the two mechanisms proposed for storage and recovery of energy within a stride: a ‘pendulum-like’ mechanism during a walk, and a ‘spring-like’ mechanism during a run. In the stance phase of the walking dog, we found that the supraspinatus, long head of the triceps brachii, biceps brachii, vastus lateralis, and gastrocnemius underwent only minor length changes during a relatively long portion of their activity, Thus, a major part of their activity during the walk seems consistent with a role in stabilization of the joints as the dog ‘pole-vaulted’ over its limbs (and thereby conserved energy). In the stance phase of trotting and/or galloping dogs, we found that the supraspinatus, lateral head of the triceps, vastus lateralis, and gastrocnemius were active while being stretched prior to shortening (as would be required for elastic storage of energy), and that this type of activity increased with increasing speed. We also found muscular activity in the select limb flexors that was consistent with storage of kinetic energy at the end of the swing phase and recovery during the propulsive stroke. This activity pattern was apparent in the latissimus dorsi during a walk and trot, and in the biceps femoris during a trot and gallop. We conclude that, during locomotion, a significant fraction of the electrical activity of a number of limbs muscles occurs while they undergo little or no length change or are being stretched prior to shortening and that these types of activities occur in a manner that would enable the operation of pendulum-like and spring-like mechanisms for conserving energy within a stride. Therefore these forms of muscular activity, in addition to the more familiar activity associated with muscle shortening, should be considered to be important during locomotion.


2021 ◽  
pp. 1-11
Author(s):  
Najmeh Pakniyat ◽  
Mohammad Hossein Babini ◽  
Vladimir V. Kulish ◽  
Hamidreza Namazi

BACKGROUND: Analysis of the heart activity is one of the important areas of research in biomedical science and engineering. For this purpose, scientists analyze the activity of the heart in various conditions. Since the brain controls the heart’s activity, a relationship should exist among their activities. OBJECTIVE: In this research, for the first time the coupling between heart and brain activities was analyzed by information-based analysis. METHODS: Considering Shannon entropy as the indicator of the information of a system, we recorded electroencephalogram (EEG) and electrocardiogram (ECG) signals of 13 participants (7 M, 6 F, 18–22 years old) in different external stimulations (using pineapple, banana, vanilla, and lemon flavors as olfactory stimuli) and evaluated how the information of EEG signals and R-R time series (as heart rate variability (HRV)) are linked. RESULTS: The results indicate that the changes in the information of the R-R time series and EEG signals are strongly correlated (ρ=-0.9566). CONCLUSION: We conclude that heart and brain activities are related.


2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Gerolf Vanacker ◽  
José del R. Millán ◽  
Eileen Lew ◽  
Pierre W. Ferrez ◽  
Ferran Galán Moles ◽  
...  

Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the nonstationary nature of the brain signals provides for a rather unstable input. With the use of intelligent processing algorithms adapted to the task at hand, however, the performance can be increased. This paper introduces a shared control system that helps the subject in driving an intelligent wheelchair with a noninvasive brain interface. The subject's steering intentions are estimated from electroencephalogram (EEG) signals and passed through to the shared control system before being sent to the wheelchair motors. Experimental results show a possibility for significant improvement in the overall driving performance when using the shared control system compared to driving without it. These results have been obtained with 2 healthy subjects during their first day of training with the brain-actuated wheelchair.


1997 ◽  
Vol 273 (3) ◽  
pp. R911-R919 ◽  
Author(s):  
J. A. Fernandes ◽  
P. L. Lutz ◽  
A. Tannenbaum ◽  
A. T. Todorov ◽  
L. Liebovitch ◽  
...  

The anoxia-tolerant turtle brain slowly undergoes a complex sequence of changes in electroencephalogram (EEG) activity as the brain systematically downregulates its energy demands. Following N2 respiration, the root mean square voltage rapidly fell, reaching approximately 20% of normoxic levels after approximately 100 min of anoxia. During the first 20- to 40-min transition period, the power of the EEG decreased substantially, particularly in the 12- to 24-Hz band, with low-amplitude slow wave activity predominating (3-12 Hz). Bursts of high voltage rhythmic slow (approximately 3-8 Hz) waves were seen during the 20- to 100-min period of anoxia, accompanied by large sharp waves. During the next 400 min of N2 respiration, two distinct patterns of electrical activity characterized the anoxic turtle brain: 1) a sustained but depressed activity level, with an EEG amplitude approximately 20% of the normoxic control and with total EEG power reduced by one order of magnitude at all frequencies, and 2) short (3-15 s) periodic (0.5-2/min) bursts of mixed-frequency activity that interrupted the depressed activity state. We speculate that the EEG patterns seen during sustained anoxia represent the minimal or basic electrical activities that are compatible with the survival of the anoxic turtle brain as an integrated unit, which allow the brain to return to normal functioning when air respiration resumed.


2016 ◽  
Vol 5 (9) ◽  
pp. 1
Author(s):  
Caitilin De Berigny ◽  
Freya Zinovieff ◽  
Karen Cochrane ◽  
Youngdong Kim ◽  
Zhepeng Rui

<p>This paper explores interactive applications that encourage mindfulness through sensors and novel input technology. Research in psychology and neuroscience demonstrating the benefits of mindfulness is initiating a new movement in interactive design. As cutting edge technologies become more accessible they are being employed to research and explore the practice of mindfulness. We examine three interactive installation artworks that promote mindfulness. In order to contextualize the interactive artworks discussed we first examine the historical background of the Electroencephalogram (EEG). We then discuss the physiological processes of meditation and the history behind the clinical practice of mindfulness. We show how artists and designers employ EEG sensors, to record the electrical activity of the brain to visualize mindfulness meditation practices. Lastly, we conclude the paper by discussing the future of the three artworks.</p>


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1036
Author(s):  
Fuyuan Liao ◽  
Xueyan Zhang ◽  
Chunmei Cao ◽  
Isabella Yu-Ju Hung ◽  
Yanni Chen ◽  
...  

This study aimed to investigate the degree of regularity of surface electromyography (sEMG) signals during muscle fatigue during dynamic contractions and muscle recovery after cupping therapy. To the best of our knowledge, this is the first study assessing both muscle fatigue and muscle recovery using a nonlinear method. Twelve healthy participants were recruited to perform biceps curls at 75% of the 10 repetitions maximum under four conditions: immediately and 24 h after cupping therapy (−300 mmHg pressure), as well as after sham control (no negative pressure). Cupping therapy or sham control was assigned to each participant according to a pre-determined counter-balanced order and applied to the participant’s biceps brachii for 5 min. The degree of regularity of the sEMG signal during the first, second, and last 10 repetitions (Reps) of biceps curls was quantified using a modified sample entropy (Ems) algorithm. When exercise was performed immediately or 24 h after sham control, Ems of the sEMG signal showed a significant decrease from the first to second 10 Reps; when exercise was performed immediately after cupping therapy, Ems also showed a significant decrease from the first to second 10 Reps but its relative change was significantly smaller compared to the condition of exercise immediately after sham control. When exercise was performed 24 h after cupping therapy, Ems did not show a significant decrease, while its relative change was significantly smaller compared to the condition of exercise 24 h after sham control. These results indicated that the degree of regularity of sEMG signals quantified by Ems is capable of assessing muscle fatigue and the effect of cupping therapy. Moreover, this measure seems to be more sensitive to muscle fatigue and could yield more consistent results compared to the traditional linear measures.


2021 ◽  
Vol 17 (2) ◽  
pp. 109-113
Author(s):  
Ameen Omar Barja

One of the most important fields in clinical neurophysiology is an electroencephalogram (EEG). It is a test used to detect problems related to the brain electrical activity, and it can track and records patterns of brain waves. EEG continues to play an essential role in diagnosis and management of patients with epileptic seizure disorders. Nevertheless, the outcome of EEG as a tool for evaluating epileptic seizure is often interpreted as a noise rather than an ordered pattern. The mathematical modelling of EEG signals provides valuable data to neurologists, and is heavily utilized in the diagnosis and treatment of epilepsy. EEG signals during the seizure can be modeled as ordinary differential equation (ODE). In this study we will present an alternative form of ODE of EEG signals through the seizure.


2017 ◽  
Vol 57 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Atle Hole Saeterbakken ◽  
Dag-André Mo ◽  
Suzanne Scott ◽  
Vidar Andersen

AbstractThe aim of the study was to compare the EMG activity performing 6RM competition style bench press (flat bench-wide grip) with 1) medium and narrow grip widths on a flat bench and 1) inclined and declined bench positions with a wide grip. Twelve bench press athletes competing at national and international level participated in the study. EMG activity was measured in the pectoralis major, anterior and posterior deltoid, biceps brachii, triceps brachii and latissimus dorsi. Non-significant differences in activation were observed between the three bench positions with the exception of 58.5-62.6% lower triceps brachii activation, but 48.3-68.7% greater biceps brachii activation in the inclined bench compared with the flat and declined bench position. Comparing the three grip widths, non-significant differences in activations were observed, with the exception of 25.9-30.5% lower EMG activity in the biceps brachii using a narrow grip, compared to the medium and wide grip conditions. The 6-RM loads were 5.8-11.1% greater using a medium and wide grip compared to narrow grip width and 18.5-21.5% lower in the inclined bench position compared with flat and declined. Comparing the EMG activity during the competition bench press style with either the inclined and declined bench position (wide grip) or using a narrow and medium grip (flat bench), only resulted in different EMG activity in the biceps- and triceps brachii. The 6RM loads varied with each bench press variation and we recommend the use of a wide grip on a flat bench during high load hypertrophy training to bench press athletes.


Sign in / Sign up

Export Citation Format

Share Document