scholarly journals Performance and Security Evaluation on a Blockchain Architecture for License Plate Recognition Systems

2021 ◽  
Vol 11 (3) ◽  
pp. 1255
Author(s):  
Iago Sestrem Ochôa ◽  
Valderi Reis Quietinho Leithardt ◽  
Leonardo Calbusch ◽  
Juan Francisco De Paz Santana ◽  
Wemerson Delcio Parreira ◽  
...  

Since the early 2000s, life in cities has changed significantly due to the Internet of Things (IoT). This concept enables developers to integrate different devices collecting, storing, and processing a large amount of data, enabling new services to improve various professional and personal activities. However, privacy issues arise with a large amount of data generated, and solutions based on blockchain technology and smart contract have been developed to address these issues. Nevertheless, several issues must still be taken into account when developing blockchain architectures aimed at the IoT scenario because security flaws still exist in smart contracts, mainly due to the lack of ease when building the code. This article presents a blockchain storage architecture focused on license plate recognition (LPR) systems for smart cities focusing on privacy, performance, and security. The proposed architecture relies on the Ethereum platform. Each smart contract matches the privacy preferences of a license plate to be anonymized through public encryption. The storage of data captured by the LPR system can only be done if the smart contract enables it. However, in the case of motivation foreseen by the legislation, a competent user can change the smart contract and enable the storage of the data captured by the LPR system. Experimental results show that the performance of the proposed architecture is satisfactory, regarding the scalability of the built private network. Furthermore, tests on our smart contract using security and structure analysis tools on the developed script demonstrate that our solution is fraud-proof. The results obtained in all experiments bring evidence that our architecture is feasible to be used in real scenarios.

2019 ◽  
Vol 8 (4) ◽  
pp. 5795-5802

Blockchain Technology is one of the most popular technologies of present days. This technology has the capability to eliminate the requirement of third party to validate the transactions over the Peer-to-Peer network. Due to various features of Blockchain like smart contract, consensus mechanism, network transactions are completed securely, efficiently and timely. This technology is very useful in many areas including medical, IoT, e-Governance services, smart cities, taxation, supply chain, banking etc. In this paper, we discuss the Blockchain Technology in detail, its data structure, open source platform like Ethereum and Hyperledger, technical aspects of this technology, possible applications of this technology, challenges and limitations in adaptation of this technology.


2017 ◽  
Vol 1 (3) ◽  
pp. 270-280 ◽  
Author(s):  
Jun Lin ◽  
Zhiqi Shen ◽  
Chunyan Miao ◽  
Siyuan Liu

Purpose With the rapid growth of the Internet of Things (IoT) market and requirement, low power wide area (LPWA) technologies have become popular. In various LPWA technologies, Narrow Band IoT (NB-IoT) and long range (LoRa) are two main leading competitive technologies. Compared with NB-IoT networks, which are mainly built and managed by mobile network operators, LoRa wide area networks (LoRaWAN) are mainly operated by private companies or organizations, which suggests two issues: trust of the private network operators and lack of network coverage. This study aims to propose a conceptual architecture design of a blockchain built-in solution for LoRaWAN network servers to solve these two issues for LoRaWAN IoT solution. Design/methodology/approach The study proposed modeling, model analysis and architecture design. Findings The proposed solution uses the blockchain technology to build an open, trusted, decentralized and tamper-proof system, which provides the indisputable mechanism to verify that the data of a transaction has existed at a specific time in the network. Originality/value To the best of our knowledge, this is the first work that integrates blockchain technology and LoRaWAN IoT technology.


2018 ◽  
Vol 2018 ◽  
pp. 1-27 ◽  
Author(s):  
Emanuel Ferreira Jesus ◽  
Vanessa R. L. Chicarino ◽  
Célio V. N. de Albuquerque ◽  
Antônio A. de A. Rocha

The Internet of Things (IoT) is increasingly a reality today. Nevertheless, some key challenges still need to be given particular attention so that IoT solutions further support the growing demand for connected devices and the services offered. Due to the potential relevance and sensitivity of services, IoT solutions should address the security and privacy concerns surrounding these devices and the data they collect, generate, and process. Recently, the Blockchain technology has gained much attention in IoT solutions. Its primary usage scenarios are in the financial domain, where Blockchain creates a promising applications world and can be leveraged to solve security and privacy issues. However, this emerging technology has a great potential in the most diverse technological areas and can significantly help achieve the Internet of Things view in different aspects, increasing the capacity of decentralization, facilitating interactions, enabling new transaction models, and allowing autonomous coordination of the devices. The paper goal is to provide the concepts about the structure and operation of Blockchain and, mainly, analyze how the use of this technology can be used to provide security and privacy in IoT. Finally, we present the stalker, which is a selfish miner variant that has the objective of preventing a node to publish its blocks on the main chain.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4862 ◽  
Author(s):  
Tejasvi Alladi ◽  
Vinay Chamola ◽  
Joel J. P. C. Rodrigues ◽  
Sergei A. Kozlov

With the integration of Wireless Sensor Networks and the Internet of Things, the smart grid is being projected as a solution for the challenges regarding electricity supply in the future. However, security and privacy issues in the consumption and trading of electricity data pose serious challenges in the adoption of the smart grid. To address these challenges, blockchain technology is being researched for applicability in the smart grid. In this paper, important application areas of blockchain in the smart grid are discussed. One use case of each area is discussed in detail, suggesting a suitable blockchain architecture, a sample block structure and the potential blockchain technicalities employed in it. The blockchain can be used for peer-to-peer energy trading, where a credit-based payment scheme can enhance the energy trading process. Efficient data aggregation schemes based on the blockchain technology can be used to overcome the challenges related to privacy and security in the grid. Energy distribution systems can also use blockchain to remotely control energy flow to a particular area by monitoring the usage statistics of that area. Further, blockchain-based frameworks can also help in the diagnosis and maintenance of smart grid equipment. We also discuss several commercial implementations of blockchain in the smart grid. Finally, various challenges to be addressed for integrating these two technologies are discussed.


Author(s):  
Vitor Rodrigues Greati ◽  
Vinicius Campos Tinoco Ribeiro ◽  
Ivanovitch Medeiros Dantas da Silva ◽  
Allan de Medeiros Martins

Author(s):  
Praveen Kumare Gopalakrishnan ◽  
John Hall ◽  
Sara Behdad

Abstract Waste tracking is becoming an important concern for developed countries as well as developing regions, where municipalities aim to assure proper waste management considering environmental and economic objectives. Waste tracking is important not only for a transparent reporting system compatible with environmental regulations but also for economically viable waste collection and recovery solutions. In this paper, a waste tracking system based on the blockchain technology is introduced where different entities involved in the system will be able to retrieve required data from the platform and decide on their level of contributions. The conventional technologies do not provide a sufficient level of transparency and coordination among different entities. With the introduction of blockchain as a tamper-proof technology, municipalities can enhance the efficiency of their waste management efforts. The proposed blockchain technology can connect proper stakeholders towards collaboration and sharing information. The concept of a smart contract for waste management is discussed and further, a decision-making framework is developed to guide users of the system select proper services available to them, depending on the level of data sharing, cost, reliability, and the security level that they expect from the system.


Author(s):  
Smys S ◽  
Haoxiang Wang ◽  
Abul Basar

The speed of internet has increased dramatically with the introduction of 4G and 5G promises an even greater transmission rate with coverage outdoors and indoors in smart cities. This indicates that the introduction of 5G might result in replacing the Wi-Fi that is being currently used for applications such as geo-location using continuous radio coverage there by initiating the involvement of IoT in all devices that are used. The introduction of Wi-Fi 6 is already underway for applications that work with IoT, smart city applications will still require 5G to provide internet services using Big Data to reduce the requirement of mobile networks and additional private network infrastructure. However, as the network access begins to expand, it also introduces the risk of cyber security with the enhanced connectivity in the networking. Additional digital targets will be given to the cyber attackers and independent services will also be sharing access channel infrastructure between mobile and wireless network. In order to address these issues, we have introduced a random neural network blockchain technology that can be used to strengthen cybersecurity in many applications. Here the identity of the user is maintained as a secret while the information is codified using neural weights. However, when a cyber security breach occurs, the attacker will be easily tracked by mining the confidential identity. Thus a reliable and decentralized means of authentication method is proposed in this work. The results thus obtained are validated and shows that the introduction of the random neural network using blockchain improves connectivity, decentralized user access and cyber security resilience.


Sign in / Sign up

Export Citation Format

Share Document