scholarly journals Antibacterial Behavior of Chitosan-Sodium Hyaluronate-PEGDE Crosslinked Films

2021 ◽  
Vol 11 (3) ◽  
pp. 1267
Author(s):  
Martha Gabriela Chuc-Gamboa ◽  
Carolina María Cámara Perera ◽  
Fernando Javier Aguilar Ayala ◽  
Rossana Faride Vargas-Coronado ◽  
Juan Valerio Cauich-Rodríguez ◽  
...  

Chitosan is a natural polymer that can sustain not only osteoblast adhesion and proliferation for bone regeneration purposes, but it is also claimed to exhibit antibacterial properties towards several Gram-positive and Gram-negative bacteria. In this study, chitosan was modified with sodium hyaluronate, crosslinked with polyethylene glycol diglycidyl ether (PEGDE) and both osteoblast cytotoxicity and antibacterial behavior studied. The presence of sodium hyaluronate and PEGDE on chitosan was detected by FTIR, XRD, and XPS. Chitosan (CHT) films with sodium hyaluronate crosslinked with PEGDE showed a better thermal stability than pristine hyaluronate. In addition, osteoblast cytocompatibility improved in films containing sodium hyaluronate. However, none of the films exhibit antimicrobial activity against Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus while exhibiting low to mild activity against Salmonella typhimurion.

Author(s):  
Sridevi Chigurupati ◽  
Jahidul Islam Mohammad ◽  
Shantini Vijayabalan ◽  
Narmatha Devi Vaipuri ◽  
Kesavanarayanan Krishnan Selvarajan ◽  
...  

Objectives: Current research is aimed to investigate the natural antimicrobial potential of Durio zibethinus murr. ethanol leaves extract (DZL).Methods: DZL was subjected to the preliminary phytochemical screening along with quantitative analysis of phenols and flavonoids. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were recorded. The agar well diffusion method was used to measure the antibacterial activity against gram positive and gram negative bacteria. The microorganisms used for the study were the ATCC strains of Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes, Neisseria gonorrhoeae, Pseudomonas aeruginosa and Escherichia coli.Results: DZL exhibited the highest MIC of 0.1mg/mL and MBC of 0.25 mg/mL against gram negative bacteria, Pseudomonas aeruginosa and Escherichia coli. At MIC of 0.1mg/mL, DZL displayed significant zone of inhibition against Pseudomonas aeruginosa and Escherichia coli compared to gentamycin.Conclusion: This research has shown that DZL has natural antibacterial properties against gram negative human pathogens.


2017 ◽  
Vol 9 (2) ◽  
pp. 45 ◽  
Author(s):  
Bahareh Behmaram ◽  
Naser Foroughifar ◽  
Neda Foroughifar ◽  
Sara Hallajian

The synthesis of some 1,3-diazoles and thiazoles was realized in different conditions:a) In the presence of PTSA or sulfuric acid as catalyst we obtained only diazole products(4a-d).b) In basic medium such as DABCO or sodium hydroxide and ionic liquid afforded thiazoles.c) Both products, diazoles and thiazoles were collected when using methanol as catalyst and solvent.All structures were confirmed by IR, 1H NMR and 13C NMR spectroscopy. The antibacterial activity of some synthesized compounds was investigated against Escherichia Coli (ATCC: 25922) and Serratia marcescens (ATCC: 13880) as gram negative bacteria, Bacillus sabtilis (ATCC: 6633) and Staphylococcus aureus (ATCC: 6338) as gram positive bacteria. Some of these products exhibit good activities to significant antibacterial activity.


2009 ◽  
Vol 15 (1) ◽  
pp. 52-61 ◽  
Author(s):  
Erik F. Langsdorf ◽  
Asra Malikzay ◽  
William A. Lamarr ◽  
Dayna Daubaras ◽  
Cynthia Kravec ◽  
...  

A high-throughput mass spectrometry assay to measure the catalytic activity of UDP-3-O-(R-3-hydroxymyristoyl)- Nacetylglucosamine deacetylase, LpxC, is described. This reaction is essential in the biosynthesis of lipopolysaccharide (LPS) of gram-negative bacteria and is an attractive target for the development of new antibacterial agents. The assay uses the RapidFire™ mass spectrometry platform to measure the native LpxC substrate and the reaction product and thereby generates a ratiometric readout with minimal artifacts due to detection interference. The assay was robust in a high-throughput screen of a library of more than 700,000 compounds arrayed as orthogonal mixtures, with a median Z' factor of 0.74. Selected novel inhibitors from the screening campaign were confirmed as binding to LpxC by biophysical measurements using a thermal stability shift assay. Some inhibitors showed whole-cell antimicrobial activity against a sensitive strain of Escherichia coli with reduced LpxC activity (strain D22; minimum inhibitory concentrations ranging from 0.625-20 µg/mL). The results show that mass spectrometry—based screening is a valuable high-throughput screening tool for detecting inhibitors of enzymatic targets involving difficult to detect reactions.


2004 ◽  
Vol 59 (11-12) ◽  
pp. 782-786 ◽  
Author(s):  
Edyta Woźniak ◽  
Anna Mozrzymas ◽  
Anna Czarny ◽  
Maja Kocięba ◽  
Bożenna Różycka-Roszak ◽  
...  

The aim of the study was to assay antibacterial and antifungal activity of newly synthesised N-alkoxycarbonylmethyl-N-alkyl-piperidinium chlorides. The compounds tested were found to inhibit the growth of some Gram-negative bacteria, Gram-positive strains and some representatives of yeast-type Candida. From microbiological experiments two of the compounds tested, N-dodecyloxycarbonylmethyl-N-methyl-piperidinium chloride (3) and N-dodecyl-Nethoxycarbonylmethyl- piperidinium chloride (6), emerged as more active than the other compounds. Since the resistance of biofilms to biocides should be noted during the design and testing of new antimicrobial agents therefore, we have analysed antibacterial properties of the most active compounds towards biofilms. Our study focused on strains of Pseudomonas aeruginosa and Staphylococcus aureus that served as main model organisms for the biofilm studies.


1989 ◽  
Vol 52 (1) ◽  
pp. 49-50 ◽  
Author(s):  
CARLOS M. LLABRÉS ◽  
BONNIE E. ROSE

Seven different brands of cellulose sponges and one polyurethane variety were evaluated for inhibitory properties on twelve strains of gram positive and gram negative bacteria. Sponges were cut in 13 mm or 17 mm discs, autoclaved and aseptically placed on inoculated Tryptic Soy agar plates. The inhibitory effects of sterile sponges, unrinsed, and rinsed in distilled water, were measured. The zone of inhibition values were based on the average of the diameters of the clear zones on the inoculated plates. Polyurethane and EXPANDING CELLULOSE SPONGES were the only varieties which did not exhibit antimicrobial properties with any of the selected bacterial strains. A thorough rinsing procedure was often insufficient to remove the inhibitory agents from the sponges. Listeria monocytogenes strain Scott A and Staphylococcus aureus, both gram positive, were strongly inhibited.


2020 ◽  
Vol 10 (1) ◽  
pp. 39-50
Author(s):  
Anvesha Sinha ◽  
Jayanand Manjhi

Background: The quandary of antimicrobial resistance is rapidly becoming a cause for global concern. Meanwhile, green biological synthesis of silver nanoparticles is being extensively studied for their antibacterial properties. However, in the dearth of appropriate and substantial evidence, the development of Green Silver Nanoparticles (GSNPs) as the antibacterial drug is impeded. Objective: The present study aims at surfacing the mechanism behind the inhibitory actions of GSNPs against both gram-positive and gram-negative bacteria. Methods: Silver nanoparticles were fabricated using the peels of Citrus Sinensis and Punica granatum and characterized using UV-Vis Spectrophotometer, XRD, FTIR, SEM and TEM. The GSNPs were further scrutinized for their antibacterial properties against Gran negative Escherichia coli and grampositive Listeria monocytogenes and confirmed using FC analysis. Further multiple parameters were investigated for deciphering the mechanism of antibacterial action. Results: The results reveal the fabrication of 14-60 nm polydispersed GSNPs having 96% inhibition potential against both the test bacteria. Deposition of GSNPs on the bacterial surface resulting in pit formation in the bacterial cell wall and membrane causing leaking of cellular components and deactivation of bacterial enzymes were observed in the present study. Conclusion: The study proves that contrary to earlier investigations, GSNPs prepared using orange and pomegranate peels are effective against both gram positive and gram negative bacteria and may thus be used for the development of antibacterial therapies, subjected to further investigation.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 485
Author(s):  
Kunhong Zhong ◽  
Yuelong Wang ◽  
Zeng Wang ◽  
Zongliang Zhang ◽  
Shasha Zhao ◽  
...  

Antimicrobial peptides (AMPs), which are evolutionarily conserved components of the innate immune response, contribute to the first line of defense against microbes in the skin and at mucosal surfaces. Here, we report the identification of a human peptide, encoded by the chromosome 5 open reading frame 46 (C5orf46) gene, as a type of AMP, which we termed antimicrobial peptide with 64 amino acid residues (AP-64). AP-64 is an anionic amphiphilic peptide lacking cysteines (MW = 7.2, PI = 4.54). AP-64 exhibited significant antibacterial activity against Gram-negative bacteria, including Escherichia coli DH5α, Escherichia coli O157:H7, Vibrio cholerae, and Pseudomonas aeruginosa. Moreover, AP-64 was efficient in combating Escherichia coli O157:H7 infections in a mouse model and exhibited cytotoxic effects against human T-cell lymphoma Jurkat and B-cell lymphoma Raji cells. We also observed that Gm94, encoded by mouse C5orf46 homologous gene, closely resembles AP-64 in its antibacterial properties. Compared with other human AMPs, AP-64 has distinct characteristics, including a longer sequence length, absence of cysteine residues, a highly anionic character, and cell toxicity. Together, this study identified that AP-64 is an AMP worthy of further investigation.


Author(s):  
Rubal C Das ◽  
Rajib Banik ◽  
Robiul Hasan Bhuiyan ◽  
Md Golam Kabir

Macrophomina phaseolina is one of the pathogenic organisms of gummosis disease of orange tree (Citrus reticulata). The pathogen was identified from the observation of their colony size, shape, colour, mycelium, conidiophore, conidia, hyaline, spore, and appressoria in the PDA culture. The crude chloroform extracts from the organism showed antibacterial activity against a number of Gram positive and Gram-negative bacteria. The crude chloroform extract also showed promising antifungal activity against three species of the genus Aspergillus. The minimum inhibitory concentration (MIC) of the crude chloroform extract from M. phaseolina against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Shigella sonnie were 128 ?gm, 256 ?gm, 128 ?gm and 64 ?gm/ml respectively. The LD50 (lethal dose) values of the cytotoxicity assay over brine shrimp of the crude chloroform extract from M. phaseolina was found to be 51.79 ?gm/ml. DOI: http://dx.doi.org/10.3329/cujbs.v5i1.13378 The Chittagong Univ. J. B. Sci.,Vol. 5(1 &2):125-133, 2010


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 789
Author(s):  
Shih-Fu Ou ◽  
Ya-Yun Zheng ◽  
Sin-Jen Lee ◽  
Shyi-Tien Chen ◽  
Chien-Hui Wu ◽  
...  

Graphene quantum dots, carbon nanomaterials with excellent fluorescence characteristics, are advantageous for use in biological systems owing to their small size, non-toxicity, and biocompatibility. We used the hydrothermal method to prepare functional N-doped carbon quantum dots (N-CQDs) from 1,3,6-trinitropyrene and analyzed their ability to fluorescently stain various bacteria. Our results showed that N-CQDs stain the cell septa and membrane of the Gram-negative bacteria Escherichia coli, Salmonellaenteritidis, and Vibrio parahaemolyticus and the Gram-positive bacteria Bacillus subtilis, Listeria monocytogenes, and Staphylococcus aureus. The optimal concentration of N-CQDs was approximately 500 ppm for Gram-negative bacteria and 1000 ppm for Gram-positive bacteria, and the exposure times varied with bacteria. N-Doped carbon quantum dots have better light stability and higher photobleaching resistance than the commercially available FM4-64. When excited at two different wavelengths, N-CQDs can emit light of both red and green wavelengths, making them ideal for bioimaging. They can also specifically stain Gram-positive and Gram-negative bacterial cell membranes. We developed an inexpensive, relatively easy, and bio-friendly method to synthesize an N-CQD composite. Additionally, they can serve as a universal bacterial membrane-staining dye, with better photobleaching resistance than commercial dyes.


Sign in / Sign up

Export Citation Format

Share Document