scholarly journals Therapeutic Hydrogel Lenses and the Antibacterial and Antibiotic Drugs Release

2021 ◽  
Vol 11 (4) ◽  
pp. 1931
Author(s):  
Alessandra Pulliero ◽  
Aldo Profumo ◽  
Camillo Rosano ◽  
Alberto Izzotti ◽  
Sergio Claudio Saccà

The aim of this research was to evaluate the effects of different lens types on the availability and efficacy of anti-inflammatory and antibiotic drugs. Three lens types were examined: (1) nonionic hydrogel lenses; (2) ionic hydrogel lenses; and (3) silicone hydrogel lenses. The lenses were incubated with (a) dexamethasone; (b) betamethasone; (c) bromophenacyl bromide; and (d) chloramphenicol. Drug availability was quantified by gradient HPLC, and chloramphenicol antibacterial activity was quantified by testing the inhibition of Salmonella typhimurium growth on agar. The lens allowing the most abundant passage of betamethasone was the ionic hydrogel lens, followed by the silicone hydrogel lens and nonionic hydrogel lens. The lens allowing the most abundant passage of dexamethasone was the ionic hydrogel lens, but only at 0.5 h and 1 h. Regarding chloramphenicol, the ionic hydrogel lens and silicone hydrogel lens allowed more abundant passage than the nonionic hydrogel lens. These results highlight the relevance of adapting lenses to anti-inflammatory therapy, thus allowing a personalized medical approach.

2019 ◽  
Vol 193 ◽  
pp. 100-108 ◽  
Author(s):  
Manuel I. Azócar ◽  
Romina Alarcón ◽  
Antonio Castillo ◽  
Jenny M. Blamey ◽  
Mariana Walter ◽  
...  

Author(s):  
ARPITHA SHIVAMALLU ◽  
SHAILASREE SEKHAR

Objectives: The aim of this study was to evaluate the antioxidant, anti-inflammatory, and anti-cancer potencies of the Delonix regia bark, a first of its kind. Methods: The bark was extracted sequentially in Soxhlet apparatus with hexane, chloroform, and methanol in the increasing order of polarity. These extracts were subjected to find its antioxidant activity and total phenol content. Antibacterial activity against human pathogenic bacteria was tested. The anti-inflammatory properties were elucidated by its capacity to inhibit 15-lipoxygenase (LOX) and human cyclooxygenase (COX)-2. Cell cytotoxic capacity was evaluated against MCF-7 cells breast cancer cell lines. Results: Liquid chromatography (LC)-Mass Spectroscopy (MS) fingerprint of the methanol extract identified a total of 14 polyphenols, of which five were structurally characterized based on their mass-charge ratio [M-H]− peak, UV-vis absorption in comparison to published data. Antibacterial activity by disk diffusion inhibited human pathogenic bacteria. Bacterial biofilm inhibition capacity of extract (750 mg) imaged by confocal laser scanning microscopy revealed loss of microcolonies. Extract when tested for 15-LOX inhibition exhibited IC50 values of 94.5 ± 1.23 mg.mL−1 by enzyme kinetics studies using spectrophotometric techniques. Similarly, it could inhibit COX-2 enzyme at relatively lower concentrations (32.18 ± 1.91 mg.mL−1). Further, it quenched free radicals produced by Fentons’ reagent studied by DNS-nicking assay indicating its strong antioxidant property with the capacity to protect DNA. In vitro cytotoxicity was evaluated by 3-(4,5-dimethylthylthiazol-2-yl)-2,5-diphynyl tetrazolium bromide assay and apoptosis induced in MCF-7 cells was assessed morphologically. Conclusion: Our data suggest that D. regia bark methanol extract exerts its therapeutic activity for further pharmaceutical evaluations. Further studies are necessary to determine the mechanisms of these pharmacological properties.


Author(s):  
Saffiya Banu. A ◽  
Sheila John ◽  
Sarah Jane Monica ◽  
Saraswathi. K ◽  
Arumugam. P

Recent research studies indicate the role of functional foods in preventing the development of complications associated with type 2 diabetes mellitus. Chia seeds are an excellent source of dietary fibre, essential fatty acids, micronutrients and non-nutritive components. The objective of the study was to evaluate the antioxidant, antibacterial, antidiabetic and anti-inflammatory potential of chia seeds. TPC and TFC were estimated using Folin-Ciocalteu Reagent and Alumininum Chloride method. The antioxidant activity was determined using DPPH● radical, ABTS●+ radical, Superoxide (O2-) radical, Fe3+ reducing and phosphomolybdenum reduction assay. Agar well diffusion method was used to determine the antibacterial activity against Escherichia coli, Proteus vulgaris, Shigella flexneri, Micrococcus luteus, Bacillus subtilis and Staphylococcus aureus. Antidiabetic and anti-inflammatory activities were evaluated using alpha amylase inhibition assay and heat induced haemolysis method. Volatile functional compounds were identified using Gas chromatography mass spectrometry. Upon quantification, TPC and TFC were found to be 850.67±14.14µg/mg GAE and 171.21±12.86µg/mg QE. Free radical scavenging activity of chia seeds was ranked in the order of DPPH● radical >ABTS●+ radical > Superoxide (O2-) radical. The capability of chia seeds to function as electron donors was evident through its strong reducing power. With regard to antibacterial activity, maximum inhibition was observed for Staphylococcus aureus, with a zone of inhibition of 31mm at 500µg/mL. Results of antidiabetic assay highlighted the alpha amylase inhibitory action of chia seeds with an IC50 value of 121.46µg/mL. The anti-inflammatory activity of chia seeds increased linearly in a dose dependent manner. GC-MS analysis showed the presence of functionally active compounds such as coumarine, napthoquinone, phytol, fatty acids, flavone and flavone derivatives. Findings of the study highlight that chia seeds have several essential therapeutic properties. Furthermore, clinical studies are required to validate the role of chia seeds in preventing the development of complications associated with type 2 diabetes mellitus.


2019 ◽  
Vol 31 (10) ◽  
pp. 2389-2393
Author(s):  
Sravanthi Siliveri ◽  
Harinadha Babu Vamaraju ◽  
Shivaraj

In the present work, novel pyrazole fused dihydrofurans synthesized via a chronological addition of N-chloro succinimide and base piperidine to pyrano[3,2-c]pyrazole carbonitrile derivatives in methanol medium. Oxidative difunctionalization was done with the reagent N-chloro succinimide by the addition of both chlorine and alkoxy groups crosswise the chromene double bond. The addition of base results in the construction of dihydrofuran derivatives by ring contraction. The structures of newly synthesized compounds were characterized on the basis of physical and spectral data. Synthesized compounds were evaluated for antibacterial and anti-inflammatory activities. All the compounds exhibited significant antibacterial activity against all the four strains of bacteria and their MICs ranged between 1.56 and 12.55 μg/mL. In anti-inflammatory screening, among all the tested compounds, compounds 7, 8, 9, 11, 12, 13, 14, 16, 17 and 18 exhibited significant protection against the edema formation at a concentration of 100 mg/kg.


2019 ◽  
Vol 20 (19) ◽  
pp. 4895 ◽  
Author(s):  
Mihee Jang ◽  
Jieun Kim ◽  
Yujin Choi ◽  
JeongKyu Bang ◽  
Yangmee Kim

Recently, bioactive peptides have attracted attention for their therapeutic applications in the pharmaceutical industry. Among them, antimicrobial peptides are candidates for new antibiotic drugs. Since pseudin-2 (Ps), isolated from the skin of the paradoxical frog Pseudis paradoxa, shows broad-spectrum antibacterial activity with high cytotoxicity, we previously designed Ps-K18 with a Lys substitution for Leu18 in Ps, which showed high antibacterial activity and low toxicity. Here, we examined the potency of Ps-K18, aiming to develop antibiotics derived from bioactive peptides for the treatment of Gram-negative sepsis. We first investigated the antibacterial mechanism of Ps-K18 based on confocal micrographs and field emission scanning electron microscopy, confirming that Ps-K18 targets the bacterial membrane. Anti-inflammatory mechanism of Ps-K18 was investigated by secreted alkaline phosphatase reporter gene assays and RT-PCR, which revealed that Ps-K18 activates innate defense via Toll-like receptor 4-mediated nuclear factor-kappa B signaling pathways. Moreover, we investigated the antiseptic effect of Ps-K18 using a lipopolysaccharide or Escherichia coli K1-induced septic shock mouse model. Ps-K18 significantly reduced bacterial growth and inflammatory responses in the septic shock model. Ps-K18 showed low renal and liver toxicity and attenuated lung damage effectively. This study suggests that Ps-K18 is a potent peptide antibiotic that could be applied therapeutically to Gram-negative sepsis.


Sign in / Sign up

Export Citation Format

Share Document