scholarly journals Applications of Cold Atmospheric Pressure Plasma in Dentistry

2021 ◽  
Vol 11 (5) ◽  
pp. 1975
Author(s):  
Aline C. Borges ◽  
Konstantin G. Kostov ◽  
Rodrigo S. Pessoa ◽  
Geraldo M.A. de Abreu ◽  
Gabriela de M.G. Lima ◽  
...  

Plasma is an electrically conducting medium that responds to electric and magnetic fields. It consists of large quantities of highly reactive species, such as ions, energetic electrons, exited atoms and molecules, ultraviolet photons, and metastable and active radicals. Non-thermal or cold plasmas are partially ionized gases whose electron temperatures usually exceed several tens of thousand degrees K, while the ions and neutrals have much lower temperatures. Due to the presence of reactive species at low temperature, the biological effects of non-thermal plasmas have been studied for application in the medical area with promising results. This review outlines the application of cold atmospheric pressure plasma (CAPP) in dentistry for the control of several pathogenic microorganisms, induction of anti-inflammatory, tissue repair effects and apoptosis of cancer cells, with low toxicity to healthy cells. Therefore, CAPP has potential to be applied in many areas of dentistry such as cariology, periodontology, endodontics and oral oncology.

2020 ◽  
Vol 10 (19) ◽  
pp. 6898
Author(s):  
Lars Boeckmann ◽  
Mirijam Schäfer ◽  
Thoralf Bernhardt ◽  
Marie Luise Semmler ◽  
Ole Jung ◽  
...  

Plasma medicine is gaining increasing attention and is moving from basic research into clinical practice. While areas of application are diverse, much research has been conducted assessing the use of cold atmospheric pressure plasma (CAP) in wound healing and cancer treatment—two applications with entirely different goals. In wound healing, a tissue-stimulating effect is intended, whereas cancer therapy aims at killing malignant cells. In this review, we provide an overview of the latest clinical and some preclinical research on the efficacy of CAP in wound healing and cancer therapy. Furthermore, we discuss the current understanding of molecular signaling mechanisms triggered by CAP that grant CAP its antiseptic and tissue regenerating or anti-proliferative and cell death-inducing properties. For the efficacy of CAP in wound healing, already substantial evidence from clinical studies is available, while evidence for therapeutic effects of CAP in oncology is mainly from in vitro and in vivo animal studies. Efforts to elucidate the mode of action of CAP suggest that different components, such as ultraviolet (UV) radiation, electromagnetic fields, and reactive species, may act synergistically, with reactive species being regarded as the major effector by modulating complex and concentration-dependent redox signaling pathways.


2019 ◽  
Vol 14 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Khaled Lotfy ◽  
Sayed Mohammed Khalil ◽  
Hany Abd El-Raheem

AbstractA helium cold atmospheric pressure plasma jet (HCAPPJ) driven by a commercial neon power supply was designed and utilized for inactivation bacteria. The generated reactive spices by HCAPPJ were investigated by optical emission spectroscopy. The reactive species of OH, OI, OI, N21+, N21+ and He were identified in the UV–Vis wavelength region. The reactive species was not detected between 200 nm and 300 nm, as the flow rate of helium gas increased that led to the plasma temperature reducing to a value near to the room temperature. In this work, we studied the impact of HCAPPJ on Gram-positive and Gram-negative bacteria. The survival amounts of the two types of bacteria were decreased vastly when the rate flow rate was equal to 10 L/min.


Author(s):  
Dominik Terefinko ◽  
Anna Dzimitrowicz ◽  
Aleksandra Bielawska-Pohl ◽  
Aleksandra Klimczak ◽  
Pawel Pohl ◽  
...  

Author(s):  
Kenneth A. Cornell ◽  
Amanda White ◽  
Adam Croteau ◽  
Jessica Carlson ◽  
Zeke Kennedy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document