scholarly journals Modelling of Amplitude Modulated Vocal Fry Glottal Area Waveforms Using an Analysis-by-Synthesis Approach

2021 ◽  
Vol 11 (5) ◽  
pp. 1990
Author(s):  
Vinod Devaraj ◽  
Philipp Aichinger

The characterization of voice quality is important for the diagnosis of a voice disorder. Vocal fry is a voice quality which is traditionally characterized by a low frequency and a long closed phase of the glottis. However, we also observed amplitude modulated vocal fry glottal area waveforms (GAWs) without long closed phases (positive group) which we modelled using an analysis-by-synthesis approach. Natural and synthetic GAWs are modelled. The negative group consists of euphonic, i.e., normophonic GAWs. The analysis-by-synthesis approach fits two modelled GAWs for each of the input GAW. One modelled GAW is modulated to replicate the amplitude and frequency modulations of the input GAW and the other modelled GAW is unmodulated. The modelling errors of the two modelled GAWs are determined to classify the GAWs into the positive and the negative groups using a simple support vector machine (SVM) classifier with a linear kernel. The modelling errors of all vocal fry GAWs obtained using the modulating model are smaller than the modelling errors obtained using the unmodulated model. Using the two modelling errors as predictors for classification, no false positives or false negatives are obtained. To further distinguish the subtypes of amplitude modulated vocal fry GAWs, the entropy of the modulator’s power spectral density and the modulator-to-carrier frequency ratio are obtained.

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Khaled Daqrouq ◽  
Abdel-Rahman Al-Qawasmi ◽  
Ahmed Balamesh ◽  
Ali S. Alghamdi ◽  
Mohamed A. Al-Amoudi

Speech parameters may include perturbation measurements, spectral and cepstral modeling, and pathological effects of some diseases, like influenza, that affect the vocal tract. The verification task is a very good process to discriminate between different types of voice disorder. This study investigated the modeling of influenza’s pathological effects on the speech signals of the Arabic vowels “A” and “O.” For feature extraction, linear prediction coding (LPC) of discrete wavelet transform (DWT) subsignals denoted by LPCW was used. k-Nearest neighbor (KNN) and support vector machine (SVM) classifiers were used for classification. To study the pathological effects of influenza on the vowel “A” and vowel “O,” power spectral density (PSD) and spectrogram were illustrated, where the PSD of “A” and “O” was repressed as a result of the pathological effects. The obtained results showed that the verification parameters achieved for the vowel “A” were better than those for vowel “O” for both KNN and SVM for an average. The receiver operating characteristic curve was used for interpretation. The modeling by the speech utterances as words was also investigated. We can claim that the speech utterances as words could model the influenza disease with a good quality of the verification parameters with slightly less performance than the vowels “A” as speech utterances. A comparison with state-of-the-art method was made. The best results were achieved by the LPCW method.


Algorithms ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 145
Author(s):  
Hongquan Qu ◽  
Zhanli Fan ◽  
Shuqin Cao ◽  
Liping Pang ◽  
Hao Wang ◽  
...  

Electroencephalogram (EEG) signals contain a lot of human body performance information. With the development of the brain–computer interface (BCI) technology, many researchers have used the feature extraction and classification algorithms in various fields to study the feature extraction and classification of EEG signals. In this paper, the sensitive bands of EEG data under different mental workloads are studied. By selecting the characteristics of EEG signals, the bands with the highest sensitivity to mental loads are selected. In this paper, EEG signals are measured in different load flight experiments. First, the EEG signals are preprocessed by independent component analysis (ICA) to remove the interference of electrooculogram (EOG) signals, and then the power spectral density and energy are calculated for feature extraction. Finally, the feature importance is selected based on Gini impurity. The classification accuracy of the support vector machines (SVM) classifier is verified by comparing the characteristics of the full band with the characteristics of the β band. The results show that the characteristics of the β band are the most sensitive in EEG data under different mental workloads.


Author(s):  
John J. Sidtis ◽  
Diana Van Lancker Sidtis ◽  
Ritesh Ramdhani ◽  
Michele Tagliati

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has become an effective and widely used tool in the treatment of Parkinson’s disease (PD). STN-DBS has varied effects on speech. Clinical speech ratings suggest worsening following STN-DBS, but quantitative intelligibility, perceptual, and acoustic studies have produced mixed and inconsistent results. Improvements in phonation and declines in articulation have frequently been reported during different speech tasks under different stimulation conditions. Questions remain about preferred STN-DBS stimulation settings. Seven right-handed, native speakers of English with PD treated with bilateral STN-DBS were studied off medication at three stimulation conditions: stimulators off, 60 Hz (low frequency stimulation - LFS), and the typical clinical setting of 185 Hz (High frequency - HFS). Spontaneous speech was recorded in each condition and excerpts were prepared for transcription (intelligibility) and difficulty judgements. Separate excerpts were prepared for listeners to rate abnormalities in voice, articulation, fluency, and rate. Intelligibility for spontaneous speech was reduced at both HFS and LFS when compared to STN-DBS off. Speech produced at HFS was more intelligible than that produced at LFS, but HFS made the intelligibility task (transcription) subjectively more difficult. Both voice quality and articulation were judged to be more abnormal with STN-DBS on. STN-DBS reduced the intelligibility of spontaneous speech at both LFS and HFS but lowering the frequency did not improve intelligibility. Voice quality ratings with STN-DBS were correlated with the ratings made without stimulation. This was not true for articulation ratings. STN-DBS exacerbated an existing voice disorder and may have introduced new articulatory abnormalities.


2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>


2020 ◽  
Vol 20 ◽  
Author(s):  
Hongwei Zhang ◽  
Steven Wang ◽  
Tao Huang

Aims: We would like to identify the biomarkers for chronic hypersensitivity pneumonitis (CHP) and facilitate the precise gene therapy of CHP. Background: Chronic hypersensitivity pneumonitis (CHP) is an interstitial lung disease caused by hypersensitive reactions to inhaled antigens. Clinically, the tasks of differentiating between CHP and other interstitial lungs diseases, especially idiopathic pulmonary fibrosis (IPF), were challenging. Objective: In this study, we analyzed the public available gene expression profile of 82 CHP patients, 103 IPF patients, and 103 control samples to identify the CHP biomarkers. Method: The CHP biomarkers were selected with advanced feature selection methods: Monte Carlo Feature Selection (MCFS) and Incremental Feature Selection (IFS). A Support Vector Machine (SVM) classifier was built. Then, we analyzed these CHP biomarkers through functional enrichment analysis and differential co-expression analysis. Result: There were 674 identified CHP biomarkers. The co-expression network of these biomarkers in CHP included more negative regulations and the network structure of CHP was quite different from the network of IPF and control. Conclusion: The SVM classifier may serve as an important clinical tool to address the challenging task of differentiating between CHP and IPF. Many of the biomarker genes on the differential co-expression network showed great promise in revealing the underlying mechanisms of CHP.


Author(s):  
B. Venkatesh ◽  
J. Anuradha

In Microarray Data, it is complicated to achieve more classification accuracy due to the presence of high dimensions, irrelevant and noisy data. And also It had more gene expression data and fewer samples. To increase the classification accuracy and the processing speed of the model, an optimal number of features need to extract, this can be achieved by applying the feature selection method. In this paper, we propose a hybrid ensemble feature selection method. The proposed method has two phases, filter and wrapper phase in filter phase ensemble technique is used for aggregating the feature ranks of the Relief, minimum redundancy Maximum Relevance (mRMR), and Feature Correlation (FC) filter feature selection methods. This paper uses the Fuzzy Gaussian membership function ordering for aggregating the ranks. In wrapper phase, Improved Binary Particle Swarm Optimization (IBPSO) is used for selecting the optimal features, and the RBF Kernel-based Support Vector Machine (SVM) classifier is used as an evaluator. The performance of the proposed model are compared with state of art feature selection methods using five benchmark datasets. For evaluation various performance metrics such as Accuracy, Recall, Precision, and F1-Score are used. Furthermore, the experimental results show that the performance of the proposed method outperforms the other feature selection methods.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 739
Author(s):  
Alessandro Bevilacqua ◽  
Margherita Mottola ◽  
Fabio Ferroni ◽  
Alice Rossi ◽  
Giampaolo Gavelli ◽  
...  

Predicting clinically significant prostate cancer (csPCa) is crucial in PCa management. 3T-magnetic resonance (MR) systems may have a novel role in quantitative imaging and early csPCa prediction, accordingly. In this study, we develop a radiomic model for predicting csPCa based solely on native b2000 diffusion weighted imaging (DWIb2000) and debate the effectiveness of apparent diffusion coefficient (ADC) in the same task. In total, 105 patients were retrospectively enrolled between January–November 2020, with confirmed csPCa or ncsPCa based on biopsy. DWIb2000 and ADC images acquired with a 3T-MRI were analyzed by computing 84 local first-order radiomic features (RFs). Two predictive models were built based on DWIb2000 and ADC, separately. Relevant RFs were selected through LASSO, a support vector machine (SVM) classifier was trained using repeated 3-fold cross validation (CV) and validated on a holdout set. The SVM models rely on a single couple of uncorrelated RFs (ρ < 0.15) selected through Wilcoxon rank-sum test (p ≤ 0.05) with Holm–Bonferroni correction. On the holdout set, while the ADC model yielded AUC = 0.76 (95% CI, 0.63–0.96), the DWIb2000 model reached AUC = 0.84 (95% CI, 0.63–0.90), with specificity = 75%, sensitivity = 90%, and informedness = 0.65. This study establishes the primary role of 3T-DWIb2000 in PCa quantitative analyses, whilst ADC can remain the leading sequence for detection.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J.-F. Ripoll ◽  
T. Farges ◽  
D. M. Malaspina ◽  
G. S. Cunningham ◽  
E. H. Lay ◽  
...  

AbstractLightning superbolts are the most powerful and rare lightning events with intense optical emission, first identified from space. Superbolt events occurred in 2010-2018 could be localized by extracting the high energy tail of the lightning stroke signals measured by the very low frequency ground stations of the World-Wide Lightning Location Network. Here, we report electromagnetic observations of superbolts from space using Van Allen Probes satellite measurements, and ground measurements, and with two events measured both from ground and space. From burst-triggered measurements, we compute electric and magnetic power spectral density for very low frequency waves driven by superbolts, both on Earth and transmitted into space, demonstrating that superbolts transmit 10-1000 times more powerful very low frequency waves into space than typical strokes and revealing that their extreme nature is observed in space. We find several properties of superbolts that notably differ from most lightning flashes; a more symmetric first ground-wave peak due to a longer rise time, larger peak current, weaker decay of electromagnetic power density in space with distance, and a power mostly confined in the very low frequency range. Their signal is absent in space during day times and is received with a long-time delay on the Van Allen Probes. These results have implications for our understanding of lightning and superbolts, for ionosphere-magnetosphere wave transmission, wave propagation in space, and remote sensing of extreme events.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1496
Author(s):  
Hao Liang ◽  
Yiman Zhu ◽  
Dongyang Zhang ◽  
Le Chang ◽  
Yuming Lu ◽  
...  

In analog circuit, the component parameters have tolerances and the fault component parameters present a wide distribution, which brings obstacle to classification diagnosis. To tackle this problem, this article proposes a soft fault diagnosis method combining the improved barnacles mating optimizer(BMO) algorithm with the support vector machine (SVM) classifier, which can achieve the minimum redundancy and maximum relevance for feature dimension reduction with fuzzy mutual information. To be concrete, first, the improved barnacles mating optimizer algorithm is used to optimize the parameters for learning and classification. We adopt six test functions that are on three data sets from the University of California, Irvine (UCI) machine learning repository to test the performance of SVM classifier with five different optimization algorithms. The results show that the SVM classifier combined with the improved barnacles mating optimizer algorithm is characterized with high accuracy in classification. Second, fuzzy mutual information, enhanced minimum redundancy, and maximum relevance principle are applied to reduce the dimension of the feature vector. Finally, a circuit experiment is carried out to verify that the proposed method can achieve fault classification effectively when the fault parameters are both fixed and distributed. The accuracy of the proposed fault diagnosis method is 92.9% when the fault parameters are distributed, which is 1.8% higher than other classifiers on average. When the fault parameters are fixed, the accuracy rate is 99.07%, which is 0.7% higher than other classifiers on average.


2019 ◽  
Vol 45 (10) ◽  
pp. 3193-3201 ◽  
Author(s):  
Yajuan Li ◽  
Xialing Huang ◽  
Yuwei Xia ◽  
Liling Long

Abstract Purpose To explore the value of CT-enhanced quantitative features combined with machine learning for differential diagnosis of renal chromophobe cell carcinoma (chRCC) and renal oncocytoma (RO). Methods Sixty-one cases of renal tumors (chRCC = 44; RO = 17) that were pathologically confirmed at our hospital between 2008 and 2018 were retrospectively analyzed. All patients had undergone preoperative enhanced CT scans including the corticomedullary (CMP), nephrographic (NP), and excretory phases (EP) of contrast enhancement. Volumes of interest (VOIs), including lesions on the images, were manually delineated using the RadCloud platform. A LASSO regression algorithm was used to screen the image features extracted from all VOIs. Five machine learning classifications were trained to distinguish chRCC from RO by using a fivefold cross-validation strategy. The performance of the classifier was mainly evaluated by areas under the receiver operating characteristic (ROC) curve and accuracy. Results In total, 1029 features were extracted from CMP, NP, and EP. The LASSO regression algorithm was used to screen out the four, four, and six best features, respectively, and eight features were selected when CMP and NP were combined. All five classifiers had good diagnostic performance, with area under the curve (AUC) values greater than 0.850, and support vector machine (SVM) classifier showed a diagnostic accuracy of 0.945 (AUC 0.964 ± 0.054; sensitivity 0.999; specificity 0.800), showing the best performance. Conclusions Accurate preoperative differential diagnosis of chRCC and RO can be facilitated by a combination of CT-enhanced quantitative features and machine learning.


Sign in / Sign up

Export Citation Format

Share Document