scholarly journals Combining Chemical Composition Data and Numerical Modelling for the Assessment of Air Quality in a Mediterranean Port City

2021 ◽  
Vol 11 (5) ◽  
pp. 2181
Author(s):  
Rita Cesari ◽  
Alessandra Genga ◽  
Riccardo Buccolieri ◽  
Silvana Di Sabatino ◽  
Maria Siciliano ◽  
...  

The aim of this study is to characterize the air quality in a Mediterranean port city. The impact of ship emissions on both gaseous and particulate pollutants has been investigated through an integrated methodology which includes atmospheric flow and dispersion numerical modelling as well as chemical composition and statistical analyses. Specifically, chemical compositional data (ionic fraction, carbonaceous compounds, and metals) of PM2.5 were acquired during an experimental field campaign carried out in the port city of Brindisi (Apulia Region, Southern Italy). The sampling site was located on the roof of a building (ASI) within the port area. Given the complexity of the site in which both domestic buildings and a large industrial area are present, analyses were done by selecting different wind sectors to test different techniques to discriminate between sources. Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) were applied to evaluate statistical differences in the composition of PM2.5 sampled within the area when the sampling site was downwind to the port or to the urban-industrial area. Only LDA allowed to discriminate the separation between urban-industrial and port macroareas. Those results were further confirmed in terms of PM2.5 concentrations directly associated to ship emissions using a coupled modelling approach. The mesoscale model BOLCHEM was used to investigate the contribution of ship emissions both on primary and secondary PM2.5 concentration in the area surrounding the port, as well as on PM10, NOX and O3 concentrations. Then, the model was coupled offline with the local dispersion model ADMS-Urban. The adopted approach was crucial to evaluate the spatial distribution of the impact of ship emissions. BOLCHEM results showed that in the cell of the port the average impact of ship emissions on NOX was 37.6%, and −11.7% on O3. The average impact on PM2.5 was 6.1%, distributed between primary (2.7%) and secondary fraction (3.4%). At local scale, the analysis of high-resolution modelling results obtained from ADMS-Urban highlighted that, at ASI position, the impact of ship emissions on PM2.5 was 6.8% when the sampling site was positioned downwind to the port area and reduced to lower than 3.0% at about 2 km from the sources.

2020 ◽  
Vol 20 (12) ◽  
pp. 7509-7530 ◽  
Author(s):  
Lin Tang ◽  
Martin O. P. Ramacher ◽  
Jana Moldanová ◽  
Volker Matthias ◽  
Matthias Karl ◽  
...  

Abstract. Ship emissions in and around ports are of interest for urban air quality management in many harbour cities. We investigated the impact of regional and local ship emissions on urban air quality for 2012 conditions in the city of Gothenburg, Sweden, the largest cargo port in Scandinavia. In order to assess the effects of ship emissions, a coupled regional- and local-scale model system has been set up using ship emissions in the Baltic Sea and the North Sea as well as in and around the port of Gothenburg. Ship emissions were calculated with the Ship Traffic Emission Assessment Model (STEAM), taking into account individual vessel characteristics and vessel activity data. The calculated contributions from local and regional shipping to local air pollution in Gothenburg were found to be substantial, especially in areas around the city ports. The relative contribution from local shipping to annual mean NO2 concentrations was 14 % as the model domain average, while the relative contribution from regional shipping in the North Sea and the Baltic Sea was 26 %. In an area close to the city terminals, the contribution of NO2 from local shipping (33 %) was higher than that of road traffic (28 %), which indicates the importance of controlling local shipping emissions. Local shipping emissions of NOx led to a decrease in the summer mean O3 levels in the city by 0.5 ppb (∼2 %) on average. Regional shipping led to a slight increase in O3 concentrations; however, the overall effect of regional and the local shipping together was a small decrease in the summer mean O3 concentrations in the city. In addition, volatile organic compound (VOC) emissions from local shipping compensate up to 4 ppb of the decrease in summer O3 concentrations due to the NO titration effect. For particulate matter with a median aerodynamic diameter less than or equal to 2.5 µm (PM2.5), local ship emissions contributed only 3 % to the annual mean in the model domain, while regional shipping under 2012 conditions was a larger contributor, with an annual mean contribution of 11 % of the city domain average. Based on the modelled local and regional shipping contributions, the health effects of PM2.5, NO2 and ozone were assessed using the ALPHA-RiskPoll (ARP) model. An effect of the shipping-associated PM2.5 exposure in the modelled area was a mean decrease in the life expectancy by 0.015 years per person. The relative contribution of local shipping to the impact of total PM2.5 was 2.2 %, which can be compared to the 5.3 % contribution from local road traffic. The relative contribution of the regional shipping was 10.3 %. The mortalities due to the exposure to NO2 associated with shipping were calculated to be 2.6 premature deaths yr−1. The relative contribution of local and regional shipping to the total exposure to NO2 in the reference simulation was 14 % and 21 %, respectively. The shipping-related ozone exposures were due to the NO titration effect leading to a negative number of premature deaths. Our study shows that overall health impacts of regional shipping can be more significant than those of local shipping, emphasizing that abatement policy options on city-scale air pollution require close cooperation across governance levels. Our findings indicate that the strengthened Sulphur Emission Control Areas (SECAs) fuel sulphur limit from 1 % to 0.1 % in 2015, leading to a strong decrease in the formation of secondary particulate matter on a regional scale was an important step in improving the air quality in the city.


2019 ◽  
Author(s):  
Henri Diémoz ◽  
Gian Paolo Gobbi ◽  
Tiziana Magri ◽  
Giordano Pession ◽  
Sara Pittavino ◽  
...  

Abstract. This work evaluates the impact of trans-regional aerosol transport from the polluted Po basin on particulate matter levels (PM10) and physico-chemical characteristics in the northwestern Alps. To this purpose, we exploited a multi-sensor, multiplatform database over a 3-years period (2015–2017) accompanied by a series of numerical simulations. The experimental setup included operational (24/7) vertically-resolved aerosol profiles by an Automated LiDAR-Ceilometer (ALC), verticallyintegrated aerosol properties by a sun/sky photometer, and surface measurements of aerosol mass concentration, size distribution and chemical composition. This experimental set of observations was then complemented by modelling tools, including Numerical Weather Prediction (NWP), Trajectory Statistical (TSM) and Chemical Transport (CTM) models, plus Positive Matrix Factorisation (PMF) on both the PM10 chemical speciation analyses and size distributions. In a first companion study (Diémoz et al., 2019), we showed and discussed through detailed case studies the 4-D phenomenology of recurrent episodes of aerosol transport from the polluted Po basin to the northwestern Italian Alps, and particularly to the Aosta Valley. Here we draw more general and statistically significant conclusions on the frequency of occurrence of this phenomenon, and on the quantitative impact of this regular, wind-driven, aerosol-rich atmospheric tide on PM10 air quality levels in this alpine environment. Combining vertically-resolved ALC measurements with wind information, we found that an advected aerosol layer is observed at the receptor site (Aosta) in 93 % of days characterized by easterly winds (thermally-driven winds from the plain or synoptic circulation regimes), and that the longer the time spent by air masses over the Po plain the higher this probability. On a seasonal basis, frequency of advected aerosol layers from the Po basin maximises in summer (70 % of the days classified using the ALC profiles) and minimises in winter and spring (57 % of the classified days). Duration of these advection events ranges from few hours up to several days, while aerosol layer thickness ranges from 500 up to 4000 m. This phenomenon was found to largely impact both surface levels and column-integrated aerosol properties, with PM10 and AOD values respectively increasing up to a factor of 3.5 and 4 in dates under the Po Valley influence. Similar variations in PM10 values observed at different stations within the Aosta Valley also indicated the phenomenon to act at the regional scale and to be related to non-local emissions. Pollution transport events were also shown to modify the mean chemical composition and typical size of particles in the target region. In fact, increase in secondary species, and mainly nitrate- and sulfate-rich components, were found to be effective proxies of the advections, with the transported aerosol responsible for at least 25 % of the PM10 measured in the urban site of Aosta, and adding up to over 50 μg m−3 during specific episodes, thus exceeding alone the EU established daily limit. This percentage is expected to be higher in the rural, pristine areas on the northwestern Alps, where chemical data were not available and trans-boundary contribution to PM10 might thus exceed the local one. Advected aerosols were also found to be on average finer, more light-scattering and more hygroscopic than the locally-produced ones. From a modelling point of view, our CTM simulations performed over a full year showed that the model is able to reproduce the phenomenon but underestimates its impact on PM10 levels. As a sensitivity test, we employed the ALC-derived identification of aerosol advections to re-weight the emissions from outside the boundaries of the regional domain in order to match the observed PM10 field. This simplified exercise indicated that an increase of such external emissions by a factor of 4 in the model would reduce the PM10 mean bias forecasts error (MBE) from −10 μg m−3 to less than 2 μg m−3, the normalised mean standard deviation (NMSD) from over −50 % to less than −10 % and would halve the model PM10 maximum deviations.


2020 ◽  
Vol 20 (17) ◽  
pp. 10667-10686
Author(s):  
Martin O. P. Ramacher ◽  
Lin Tang ◽  
Jana Moldanová ◽  
Volker Matthias ◽  
Matthias Karl ◽  
...  

Abstract. Shipping is an important source of air pollutants, from the global to the local scale. Ships emit substantial amounts of sulfur dioxides, nitrogen dioxides, and particulate matter in the vicinity of coasts, threatening the health of the coastal population, especially in harbour cities. Reductions in emissions due to shipping have been targeted by several regulations. Nevertheless, effects of these regulations come into force with temporal delays, global ship traffic is expected to grow in the future, and other land-based anthropogenic emissions might decrease. Thus, it is necessary to investigate combined impacts to identify the impact of shipping activities on air quality, population exposure, and health effects in the future. We investigated the future effect of shipping emissions on air quality and related health effects considering different scenarios of the development of shipping under current regional trends of economic growth and already decided regulations in the Gothenburg urban area in 2040. Additionally, we investigated the impact of a large-scale implementation of shore electricity in the Port of Gothenburg. For this purpose, we established a one-way nested chemistry transport modelling (CTM) system from the global to the urban scale, to calculate pollutant concentrations, population-weighted concentrations, and health effects related to NO2, PM2.5, and O3. The simulated concentrations of NO2 and PM2.5 in future scenarios for the year 2040 are in general very low with up to 4 ppb for NO2 and up to 3.5 µg m−3 PM2.5 in the urban areas which are not close to the port area. From 2012 the simulated overall exposure to PM2.5 decreased by approximately 30 % in simulated future scenarios; for NO2 the decrease was over 60 %. The simulated concentrations of O3 increased from the year 2012 to 2040 by about 20 %. In general, the contributions of local shipping emissions in 2040 focus on the harbour area but to some extent also influence the rest of the city domain. The simulated impact of onshore electricity implementation for shipping in 2040 shows reductions for NO2 in the port of up to 30 %, while increasing O3 of up to 3 %. Implementation of onshore electricity for ships at berth leads to additional local reduction potentials of up to 3 % for PM2.5 and 12 % for SO2 in the port area. All future scenarios show substantial decreases in population-weighted exposure and health-effect impacts.


Author(s):  
Agus Salim ◽  
Nunung Isnaini Dwi Ningsih ◽  
Albertus Sulaiman

The port area is a diverse business district, both industry and other activities. Even though it is positioned far from residential areas, the impact of its activities indirectly still reaches the surrounding community. The environmental conditions of the port area need to be controlled routinely so that their management does not violate applicable regulations. Environmental management is needed so that risks arising from all activities can be controlled. Panjang Port as one of the well-developed fuel storage terminals as part of the Pelindo II region. This study has been designed to assess air quality and seawater quality around Panjang Port, Bandar Lampung, Indonesia. Several air quality parameters and marine water quality parameters were monitored from 2011 to 2013. The air quality sampling conducted in the fuel storage tank area and chemicals as well as supporting facilities. The air quality parameters are SO2, NO2, O3, CO, H2S, and dust. The results of data analysis showed several air quality parameters such as SO2, NO2, O3, dust, H2S, and NH3 are below the threshold of minimum quality standard. Only the CO parameter tends to increase semester to semester. The seawater quality parameters include physical, chemical, and biological quality. Almost the physical quality parameters are below the quality standard, thus the chemical quality too, except the pH and TSS tends to higher than a quality standard. In general, these studies on air quality and seawater quality at the Panjang Port have been carried out well and the results show that the environmental conditions for the Panjang Port area are still quite good, only it is recommended to add a green area around the site.


Author(s):  
H. O. Stanley ◽  
V. N. Egbe

The aim of this study is to determine the impact of hospital wastes indiscriminately dumped at exposed dumpsites within the University of Port Harcourt Teaching Hospital. Ten random samples (100g each) were withdrawn from a depth of 0–15 cm from each sampling site for soil analysis and settling plate technique was used for microbial air quality assessment. The Microbiological assessment of the dumpsites revealed an array of microorganisms viz; Baccilus sp., Staphylococcus sp., Pseudomonas sp., Salmonella sp., Proteus sp. Escherichia coli, Trichophyton sp., Scopulariopsis sp.  Candida albicans,  Fusarium sp., Mucor sp. and Cladosporium sp. and the microbial population dynamics reveals that the bacterial and fungal counts where more abundant on hospital dumpsites when compared to a pristine soil,  as was the heavy metals levels. The air quality assessment of the dump site area reveals that most of the isolated pathogens from the soil analysis could also be airborne. This study has shown that improper dumping of hospital waste impacts deleteriously on the environment and measures must be put in place for proper management to avert any adverse health impact.


2020 ◽  
Author(s):  
Martin O. P. Ramacher ◽  
Lin Tang ◽  
Jana Moldanová ◽  
Volker Matthias ◽  
Matthias Karl ◽  
...  

Abstract. Shipping is an important source of air pollutants, from the global to the local scale. Ships are emitting substantial amounts of sulphur dioxides, nitrogen dioxides and particulate matter in the vicinity of coasts, threatening the health of the coastal population, especially in harbour cities. Reductions of emissions due to shipping have been targeted by several regulations. Nevertheless, effects of these regulations come into force with temporal delays, global ship traffic is expected to grow in the future, and other land-based anthropogenic emissions might decrease. Thus, it is necessary to investigate combined impacts to identify the impact of shipping activities on air quality, population exposure and health-effects in the future. We investigated the future effect of shipping emissions on air quality and related health effects considering different scenarios of the development of shipping under current regional trends of economic growth and already decided regulations in the Gothenburg urban area in 2040. Additionally, we investigated the impact of a large-scale implementation of shore electricity in the port of Gothenburg. For this purpose, we established a one-way nested chemistry transport modelling (CTM) system from the global to the urban scale, to calculate pollutant concentrations, population weighted concentrations and health-effects related to NO2, PM2.5 and O3. The simulated concentrations of NO2 and PM2.5 in future scenarios for the year 2040 are in general very low with up to 4 ppb for NO2 and up to 3.5 µg/m3 PM2.5 in the urban areas which are not close to the port area. From 2012 the simulated overall exposure to PM2.5 decreased by approximately 30 % in simulated future scenarios, for NO2 the decrease was over 60 %. The simulated concentrations of O3 increased from year 2012 to 2040 by about 20 %. In general, the contributions of local shipping emissions in 2040 focus on the harbour area but to some extent also influence the rest of the city domain. The simulated impact of wide use of shore-site electricity for shipping in 2040 shows reductions for NO2 in the port with up to 30 %, while increasing O3 of up to 3 %. Implementation of on-shore electricity for ships at berth leads to additional local reduction potentials of up to 3 % for PM2.5 and 12 % for SO2 in the port area. All future scenarios show substantial decreases in population weighted exposure and health-effect impacts.


2021 ◽  
Author(s):  
Lea Fink ◽  
Volker Matthias ◽  
Matthias Karl ◽  
Ronny Petrik ◽  
Elisa Majamäki ◽  
...  

<p>Shipping has major contribution to emissions of air pollutants like NOx and SO2 and the global maritime transport volumes are projected to increase significantly. The Mediterranean Sea is a region with dense ship traffic. Air quality observations in many cities along the Mediterranean coast indicate high levels of NO2 and particulate matter with significant contributions from ship emissions.<br>To quantify the current impact of shipping on air pollution, models for ship emissions and atmospheric transport can be applied, but model predictions may differ from observational data. To determine how well regional scale chemistry transport models simulate pollutant concentrations, the model outputs from several regional scale models were compared against each other and to measured data.<br>In the framework of the EU H2020 project SCIPPER, ship emission model STEAM and the regional scale models CMAQ and CHIMERE model were applied on a modelling domain covering the Mediterranean Sea. Modeling results were compared to air quality observations at coastal locations. The impact of shipping in the Mediterranean Sea was extracted from the model excluding shipping emissions.</p><p> </p>


2020 ◽  
Author(s):  
Lin Tang ◽  
Martin O. P. Ramacher ◽  
Jana Moldanová ◽  
Volker Matthias ◽  
Matthias Karl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document