scholarly journals Additive Manufacturing of Porous Ti6Al4V Alloy: Geometry Analysis and Mechanical Properties Testing

2021 ◽  
Vol 11 (6) ◽  
pp. 2611
Author(s):  
Radovan Hudák ◽  
Marek Schnitzer ◽  
Zuzana Orságová Králová ◽  
Radka Gorejová ◽  
Lukáš Mitrík ◽  
...  

This work is devoted to the research of porous titanium alloy structures suitable for use in biomedical applications. Mechanical properties were examined on six series of samples with different structures and porosity via static compressive test to identify the type of structure suitable for elimination of the “stress shielding” effect. In addition, high porosity is desirable due to the overgrowth of bone tissue into the internal structure of the implant. The samples were made of titanium alloy Ti6Al4V by using selective laser melting (SLM) additive manufacturing. The series of samples differ from each other in pore size (200, 400, and 600 µm) and porous structure topology (cubic or trabecular). The actual weight of all samples, which plays an important role in identifying other characteristics, was determined. Compressive tests were focused on the detection of maximum stress. The highest porosity and thus the lowest weight were achieved in the samples with a trabecular structure and 600 µm pore size. All tested samples reached optimal values of maximum stress and tensile strength. The most appropriate mechanical properties were observed for samples with a 200 µm pore diameter and cubic structure.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jianping Shi ◽  
Huixin Liang ◽  
Jie Jiang ◽  
Wenlai Tang ◽  
Jiquan Yang

Implant parts prepared by traditional design and manufacturing methods generally have problems of high stiffness and heavy self-weight, which may cause stress shielding effect between the implanted part and the host bone, and eventually cause loosening of the implanted part. Based on the implicit surface function equations, several porous implant models with controlled pore structure were designed. By adjusting the parameters, the apparent elastic modulus of the porous implant model can be regulated. The biomechanical simulation experiment was performed using CAE software to simulate the stress and elastic modulus of the designed models. The experimental results show that the apparent elastic modulus of the porous structure scaffold is close to that of the bone tissue, which can effectively reduce the stress shielding effect. In addition, the osseointegration status between the implant and the host bone was analyzed by implant experiment. The pushout test results show that the designed porous structures have a good osseointegration effect.


2012 ◽  
Vol 184-185 ◽  
pp. 1424-1427
Author(s):  
Jia Horng Lin ◽  
Ching Wen Lin ◽  
Yueh Sheng Chen ◽  
Chien Lin Huang ◽  
Wen Cheng Chen ◽  
...  

Nowadays, as rising research on biomaterials, the artificial bone scaffold has become the most important part of the study. Moreover, metallic materials have been applied on the artificial bone scaffold; but its high rigidity causes the stress shielding effect in bones. To improve the disadvantages of metallic materials and pursue their better mechanical properties, 304 stainless steel fibers have multi-layer braided into the 3D stainless-steel braid with porous structure and better mechanical properties, using braiding machine. In multi-layer braiding process, with the constant number of take-up gear and varying number of braid gear, the 3D stainless-steel braid was manufactured. Afterwards, its braiding structure and angle were observed by stereo microscope. Also, the optimal braiding parameters can be acquired from tensile strength test.


2020 ◽  
Vol 10 (12) ◽  
pp. 4148
Author(s):  
Rodrigo Cézar da Silveira Romero ◽  
André Argueso Machado ◽  
Kliftom Amorim Costa ◽  
Paulo Henrique Rodriguês Guilherme Reis ◽  
Pedro Paiva Brito ◽  
...  

This work aims to develop a low-cost human hand prosthesis manufactured through additive manufacturing. The methodology used for the development of the prosthesis used affordable and low-cost materials in the market. Tensile testing was performed to estimate the mechanical properties in order to verify the resistance of the printing material used. Afterwards, the mechanical feasibility study executed on the device was performed using finite element method. In conclusion, we can observe fundamental factors that influence the 3D printing process, especially in relation to its printing parameters and mechanical properties. Maximum stress, yield stress, modulus of elasticity, elongation, and hardness are the prominent properties that should be considered when choosing the polymeric material. The numerical simulation showed that the structure of the prosthesis did not present plastic deformations to the applied loads, proving its mechanical viability.


2017 ◽  
Vol 77 ◽  
pp. 219-228 ◽  
Author(s):  
C. Torres-Sanchez ◽  
F.R.A. Al Mushref ◽  
M. Norrito ◽  
K. Yendall ◽  
Y. Liu ◽  
...  

2020 ◽  
Vol 321 ◽  
pp. 13004
Author(s):  
Yasuhiko Goto ◽  
Yosuke Inoue ◽  
Hideki Fujii ◽  
Matsuhide Horikawa

To respond to the requirements for porous Ti sheet with the balanced properties of high porosity and good mechanical properties, and to optimize the manufacturing conditions of the simple powder-filling plus sintering process, effects of sintering temperatures on density and bending strength in porous Ti sheet were investigated. The optimum sintering condition was 900-950 °C for 1h to obtain porous Ti sheet with the balanced density ratio (around 40%) and high bending strength. The polyhedron shape of HDH powders contributed to those balanced properties, in which localized sintering raised bending strength with keeping high porosity (low density). Using the optimum manufacturing conditions, large sized porous Ti sheet of 400 × 800 × 0.5 mm was successfully manufactured.


RSC Advances ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 6724-6732 ◽  
Author(s):  
Ji Li ◽  
Wei Li ◽  
Zhongli Li ◽  
Yuxing Wang ◽  
Ruiling Li ◽  
...  

The fully porous Ti6Al4V cup fabricated by the sintered technique showed high porosity, large pore size with good mechanical properties. It may be effective in achieving in vivo stability after the total hip arthroplasty.


2020 ◽  
Vol 12 (10) ◽  
pp. 1492-1501
Author(s):  
Chengxue Yang ◽  
Zhengwen Yu ◽  
Yuanzhu Long ◽  
Lin Chen

Dental implants have been widely used in clinical practice. The 3D modeling software was used to design threedimensional (3D) models (in the shapes of long strips, discs, and screws), i.e., the Ti2.6Al1.2 V0.42 specimens. Meanwhile, the implant material was electrochemically precipitated, and a layer of chitosan nano-coating was added to the surface. To test the bone-binding ability and planting success rate of the material, the mechanical properties of the specimens with different porosity (0%∼70%) were firstly analyzed by the three-point bending method. Then, the screw-shaped titanium alloy specimens were divided into the solid group, the solid coating group, the solid 30% group, the coating 30% group, the solid 50% group, and the coating 50% group. The MC3T3-E1 cells were cultured, and the in vitro biological properties of the specimens were tested from different angles. The biomechanical properties and flexural strength of screw-shaped titanium alloy specimens in different groups were tested by using a universal testing machine. In the experiment, the prepared dental implants had the complete surface, uniform pore distribution, dense coating distribution, and less overall cracks. The elastic gradient of porous titanium specimens would decrease due to the increase of porosity. The cell activity of the test specimen was higher, and the percentage of viable cells exceeded 80%. The MTT test confirmed that the pores of the test specimen could promote the increase of MTT value (P < 0.05), and the test specimen/composite coating had higher ALP levels compared with the test pieces with no surface treatments (P < 0.05). In biomechanical properties and flexural strength tests, the increase of pores increased the biomechanical properties (P < 0.05) and decreased the flexural resistance (P < 0.05), while the increase of coating decreased the biomechanical properties and increased the flexural resistance (P < 0.05). The porous titanium alloy specimens were successfully prepared, and the chitosan-based composite coating was applied. The material was non-toxic, which was beneficial to cell proliferation and had good mechanical properties, thereby contributing to the growth of new bone.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Lawrence E. Murr ◽  
Sara M. Gaytan ◽  
Edwin Martinez ◽  
Frank Medina ◽  
Ryan B. Wicker

This paper presents some examples of knee and hip implant components containing porous structures and fabricated in monolithic forms utilizing electron beam melting (EBM). In addition, utilizing stiffness or relative stiffness versus relative density design plots for open-cellular structures (mesh and foam components) of Ti-6Al-4V and Co-29Cr-6Mo alloy fabricated by EBM, it is demonstrated that stiffness-compatible implants can be fabricated for optimal stress shielding for bone regimes as well as bone cell ingrowth. Implications for the fabrication of patient-specific, monolithic, multifunctional orthopaedic implants using EBM are described along with microstructures and mechanical properties characteristic of both Ti-6Al-4V and Co-29Cr-6Mo alloy prototypes, including both solid and open-cellular prototypes manufactured by additive manufacturing (AM) using EBM.


Sign in / Sign up

Export Citation Format

Share Document