scholarly journals Susceptibility of Staphylococcus epidermidis to Argon Cold Plasma Jet by Oxygen Admixture

2021 ◽  
Vol 11 (8) ◽  
pp. 3455
Author(s):  
Abdel-Aleam H. Mohamed ◽  
Abdulrahman H. Basher ◽  
Jamal Q. M. Almarashi ◽  
Salama A. Ouf

Cold atmospheric pressure sterilization is one of the nominated and efficient techniques to prevent the spread of diseases. Reactive species such as O and OH and other radicals play a major role in the mechanism of plasma sterilization. Therefore, in this work, oxygen was mixed with different parentage from (0.2 to1.2%) to argon to enhance the generation of the reactive species and increase the argon atmospheric pressure plasma sterilization efficacy. The emission spectra from the jet increase the radicle line intensities by increasing the percentage admixture of O2 with the argon gas to reach a maximum power at 0.8; then, it gradually decreases with a higher O2 percentage. The OH band intensity decreases with increasing the admixture of O2. The jet with different O2 percentages was tested against Gram-positive S. epidermidis, which is the causal agent of nosocomial infections. The maximum reduction in colony-forming units (CFU) was observed at 0.2% O2. No bacterial growth was observed at the later concentration applied for 8 min and the same case was detected at 0.4% O2 applied to 16 min.

2018 ◽  
Vol 197 ◽  
pp. 02013 ◽  
Author(s):  
Andi Wibowo Kinandana ◽  
Sumariyah Sumariyah ◽  
Muhammad Nur

Plasma-activated medium (PAM) has been produced by exposing a liquid media to Argon plasma jet. The jet plasma exposure to liquid media has produced reactive Oxygen species (ROS) in liquid phase. This study aims to determine the number of reactive species in plasma-activated medium. An atmospheric pressure plasma jet (APPJ) was generated with a dielectric barrier discharge (DBD) column by AC high voltage. Some parameters varied including exposure time; i.e. 5, 10, 15, 20, 25, and 30 min; and the distance between reactor and active media; i.e. 1, 2 and 3 cm. Some analysis conducted including variation of exposure times, the distances of reactor to PAM which affect produced concentration, and the reactive species composition in plasma-activated medium. In addition, temperature characteristics, pH levels, dissolved ozone and dissolved hydrogen peroxide concentrations were also observed in this study. The results showed that increased exposure time resulted in decreased pH, increased temperature and increased concentrations of ozone and hydrogen peroxide. The maximum reactive species composition was obtained at the distance between reactor and plasma-activated medium of 2 cm. Maximum reactive species composition obtained in this study has temperature of 29-30 Celsius degrees; pH 3.5; dissolved ozone 2.97 ppm; and Hydrogen Peroxide 215 ppm.


2012 ◽  
Vol 78 (6) ◽  
pp. 617-620
Author(s):  
YUAN ZHONG-CAI ◽  
SHI JIA-MING ◽  
CHEN ZONG-SHENG ◽  
XU BO

AbstractAn atmospheric pressure plasma jet is generated with a cold arc discharge in ambient air. The current-voltage characteristics and optical emission spectra of plasma discharges are investigated. The molecular nitrogen (N2), hydroxyl radical (OH), and oxygen atom (O) are observed and analyzed. Based on the best fit of the simulated spectra of N2 (C3∏u+ − B3∏g+) band and OH (A2∑+ − X2∏) band transition and the experimentally recorded spectra, the rotational temperature and the vibrational temperature of atmospheric pressure cold arc plasma jet (APCAPJ) are estimated.


2021 ◽  
Vol 11 (15) ◽  
pp. 6870
Author(s):  
Atif H. Asghar ◽  
Ahmed Rida Galaly

Dry argon (Ar) discharge and wet oxygen/argon (O2/Ar) admixture discharge for alternating current atmospheric pressure plasma jets (APPJs) were studied for Ar discharges with flow rates ranging from 0.2 to 4 slm and for O2/Ar discharges with different O2 ratios and flow rates ranging from 2.5 to 15 mslm. The voltage–current waveform signals of APPJ discharge, gas flow rate, photo-imaging of the plasma jet length and width, discharge plasma power, axial temperature distribution, optical emission spectra, and irradiance were investigated. Different behavior for varying oxygen content in the admixture discharge was observed. The temperature recognizably decreased, axially, far away from the nozzle of the jet as the flow rate of dry argon decreased. Similar behavior was observed for wet argon but with a lower temperature than for dry argon. The optical emission spectra and the dose rate of irradiance of a plasma jet discharge were investigated as a function of plasma jet length, for dry and wet Ar discharges, to determine the data compatible with the International Commission on Non-Ionizing Radiation Protection (ICNIRP) data for irradiance exposure limits of the skin, which are suitable for the disinfection of microbes on the skin without harmful effects, equivalent to 30 μJ/mm2.


2016 ◽  
Vol 13 (11) ◽  
pp. 1089-1105 ◽  
Author(s):  
Krishna Priya Arjunan ◽  
Adam Obrusník ◽  
Brendan T. Jones ◽  
Lenka Zajíčková ◽  
Sylwia Ptasinska

2019 ◽  
Vol 1 (1) ◽  
pp. 46-52
Author(s):  
Vasu D ◽  
Raji A ◽  
Pandiyaraj K.N ◽  
Padmanabhan P.V.A ◽  
Kandhavelu V

In this study we investigate the degradation of telmisartan (Telma-H) in simulated aqueous solution using non-thermal atmospheric pressure plasma jet (APPJ). Aqueous solution containing Telma-H was treated with APPJ as a function of applied potential and reaction time. The degradation of Telma-H was investigated by means of UV-Visible spectroscopy. Optical emission spectra (OES) of the plasma jet was used to identify the reactive species that contributed to degrade Telma H compounds. The variation of pH and conductivity of the plasma treated Telma H aqueous solution was also measured.


2018 ◽  
Vol 400 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Ek R. Adhikari ◽  
Vladimir Samara ◽  
Sylwia Ptasinska

Abstract It is now well established that plasma-induced reactive species are key agents involved in many biochemical reactions. This work reports on the formation of plasma reactive species in an acidified ferrous sulfate (Fricke) solution interacting with an atmospheric pressure plasma jet (APPJ). A yield of ferric (Fe3+) ions measured using in situ absorption spectroscopy was attributed to the formation of plasma reactive species provided and/or originated in the solution. The results indicated that the number of reactive species formed was proportional to plasma frequency and voltage. However, the Fe3+ yield per pulse decreased with increased frequency. To obtain a better understanding of the processes and species involved in the chemical reactions due to plasma exposure, Fe3+ yields were calculated and compared to the experimental data. At higher frequencies, there was insufficient time to complete all the reactions before the next pulse reached the solution; at lower frequencies, the Fe3+ yield was higher because of the relatively longer time available for reactions to occur. In addition, the comparison between DNA damage levels and Fe3+ yields was investigated under different experimental conditions in order to verify the usefulness of both the Fricke solution and the DNA molecule as a probe to characterize APPJs.


2021 ◽  
Vol 11 (14) ◽  
pp. 6311
Author(s):  
Fellype Nascimento ◽  
Kleber Petroski ◽  
Konstantin Kostov

The therapeutic effects of atmospheric pressure plasma jets (APPJs) have been associated with the presence of reactive species, mainly the reactive oxygen and nitrogen ones, generated in this kind of plasmas. Due to that, many studies attempting to enhance the production of reactive species in APPJs have been performed. The employment of gas admixtures, usually mixing a noble gas with oxygen (O2) or water vapor, is one of the most common methods to achieve such goal. This work presents a study of how the addition of small amounts of O2 affects the electrical parameters and the production of reactive species in a transferred APPJ produced at the tip of a long and flexible plastic tube. The study was carried out employing helium (He) as the working gas and applying a high voltage (HV) in the form of amplitude-modulated sine waveform (burst mode). With this configuration it was possible to verify that the O2 addition reduces the discharge power and effective current, as a result of late ignition and shorter discharge duration. It was also found that the addition of O2 to a certain content in the gas admixture makes the light emission from oxygen atoms increase, indicating an increment in oxygen related reactive species in the plasma jet. However, at the same time the light emitted from hydroxyl (OH) and nitric oxide (NO) exhibits the opposite behavior, i.e., decrease, indicating a reduction of such species in the APPJ. For these reasons, the addition of O2 to the working gas seems to be useful for increasing the effectiveness of the plasma treatment only when the target modification effect is directly dependent on the content of atomic oxygen.


Sign in / Sign up

Export Citation Format

Share Document