scholarly journals One-Dimensional Convolutional Neural Network with Adaptive Moment Estimation for Modelling of the Sand Retention Test

2021 ◽  
Vol 11 (9) ◽  
pp. 3802
Author(s):  
Said Jadid Abdulkadir ◽  
Nurul Nadhirah Abd Razak ◽  
Mohd Azuwan Maoinser ◽  
Siti Nur Amira Shaffee ◽  
Mohammed Gamal Ragab

Stand-alone screens (SASs) are active sand control methods where compatible screens and slot sizes are selected through the sand retention test (SRT) to filter an unacceptable amount of sand produced from oil and gas wells. SRTs have been modelled in the laboratory using computer simulation to replicate experimental conditions and ensure that the selected screens are suitable for selected reservoirs. However, the SRT experimental setups and result analyses are not standardized. A few changes made to the experimental setup can cause a huge variation in results, leading to different plugging performance and sand retention analysis. Besides, conducting many laboratory experiments is expensive and time-consuming. Since the application of CNN in the petroleum industry attained promising results for both classification and regression problems, this method is proposed on SRT to reduce the time, cost, and effort to run the laboratory test by predicting the plugging performance and sand production. The application of deep learning has yet to be imposed in SRT. Therefore, in this study, a deep learning model using a one-dimensional convolutional neural network (1D-CNN) with adaptive moment estimation is developed to model the SRT with the aim of classifying plugging sign (screen plug, the screen does not plug) as well as to predict sand production and retained permeability using a varying sand distribution, SAS, screen slot size, and sand concentration as inputs. The performance of the proposed 1D-CNN model for the slurry test shows that the prediction of retained permeability and the classification of plugging sign achieved robust accuracy with more than a 90% value of R2, while the prediction of sand production achieved 77% accuracy. In addition, the model for the sand pack test achieved 84% accuracy in predicting sand production. For comparative model performance, gradient boosting (GB), K-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM) were also modelled on the same datasets. The results showed that the proposed 1D-CNN model outperforms the other four machine learning models for both SRT tests in terms of prediction accuracy.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3608
Author(s):  
Chiao-Sheng Wang ◽  
I-Hsi Kao ◽  
Jau-Woei Perng

The early diagnosis of a motor is important. Many researchers have used deep learning to diagnose motor applications. This paper proposes a one-dimensional convolutional neural network for the diagnosis of permanent magnet synchronous motors. The one-dimensional convolutional neural network model is weakly supervised and consists of multiple convolutional feature-extraction modules. Through the analysis of the torque and current signals of the motors, the motors can be diagnosed under a wide range of speeds, variable loads, and eccentricity effects. The advantage of the proposed method is that the feature-extraction modules can extract multiscale features from complex conditions. The number of training parameters was reduced so as to solve the overfitting problem. Furthermore, the class feature map was proposed to automatically determine the frequency component that contributes to the classification using the weak learning method. The experimental results reveal that the proposed model can effectively diagnose three different motor states—healthy state, demagnetization fault state, and bearing fault state. In addition, the model can detect eccentric effects. By combining the current and torque features, the classification accuracy of the proposed model is up to 98.85%, which is higher than that of classical machine-learning methods such as the k-nearest neighbor and support vector machine.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 742
Author(s):  
Canh Nguyen ◽  
Vasit Sagan ◽  
Matthew Maimaitiyiming ◽  
Maitiniyazi Maimaitijiang ◽  
Sourav Bhadra ◽  
...  

Early detection of grapevine viral diseases is critical for early interventions in order to prevent the disease from spreading to the entire vineyard. Hyperspectral remote sensing can potentially detect and quantify viral diseases in a nondestructive manner. This study utilized hyperspectral imagery at the plant level to identify and classify grapevines inoculated with the newly discovered DNA virus grapevine vein-clearing virus (GVCV) at the early asymptomatic stages. An experiment was set up at a test site at South Farm Research Center, Columbia, MO, USA (38.92 N, −92.28 W), with two grapevine groups, namely healthy and GVCV-infected, while other conditions were controlled. Images of each vine were captured by a SPECIM IQ 400–1000 nm hyperspectral sensor (Oulu, Finland). Hyperspectral images were calibrated and preprocessed to retain only grapevine pixels. A statistical approach was employed to discriminate two reflectance spectra patterns between healthy and GVCV vines. Disease-centric vegetation indices (VIs) were established and explored in terms of their importance to the classification power. Pixel-wise (spectral features) classification was performed in parallel with image-wise (joint spatial–spectral features) classification within a framework involving deep learning architectures and traditional machine learning. The results showed that: (1) the discriminative wavelength regions included the 900–940 nm range in the near-infrared (NIR) region in vines 30 days after sowing (DAS) and the entire visual (VIS) region of 400–700 nm in vines 90 DAS; (2) the normalized pheophytization index (NPQI), fluorescence ratio index 1 (FRI1), plant senescence reflectance index (PSRI), anthocyanin index (AntGitelson), and water stress and canopy temperature (WSCT) measures were the most discriminative indices; (3) the support vector machine (SVM) was effective in VI-wise classification with smaller feature spaces, while the RF classifier performed better in pixel-wise and image-wise classification with larger feature spaces; and (4) the automated 3D convolutional neural network (3D-CNN) feature extractor provided promising results over the 2D convolutional neural network (2D-CNN) in learning features from hyperspectral data cubes with a limited number of samples.


Author(s):  
Canyi Du ◽  
Rui Zhong ◽  
Yishen Zhuo ◽  
Xinyu Zhang ◽  
Feifei Yu ◽  
...  

Abstract Traditional engine fault diagnosis methods usually need to extract the features manually before classifying them by the pattern recognition method, which makes it difficult to solve the end-to-end fault diagnosis problem. In recent years, deep learning has been applied in different fields, bringing considerable convenience to technological change, and its application in the automotive field also has many applications, such as image recognition, language processing, and assisted driving. In this paper, a one-dimensional convolutional neural network (1D-CNN) in deep learning is used to process vibration signals to achieve fault diagnosis and classification. By collecting the vibration signal data of different engine working conditions, the collected data are organized into several sets of data in a working cycle, which are divided into a training sample set and a test sample set. Then, a one-dimensional convolutional neural network model is built in Python to allow the feature filter (convolution kernel) to learn the data from the training set and these convolution checks process the input data of the test set. Convolution and pooling extract features to output to a new space, which is characterized by learning features directly from the original vibration signals and completing fault diagnosis. The experimental results show that the pattern recognition method based on a one-dimensional convolutional neural network can be effectively applied to engine fault diagnosis and has higher diagnostic accuracy than traditional methods.


2021 ◽  
Vol 16 ◽  
Author(s):  
Farida Alaaeldin Mostafa ◽  
Yasmine Mohamed Afify ◽  
Rasha Mohamed Ismail ◽  
Nagwa Lotfy Badr

Background: Protein sequence analysis helps in the prediction of protein functions. As the number of proteins increases, it gives the bioinformaticians a challenge to analyze and study the similarity between them. Most of the existing protein analysis methods use Support Vector Machine. Deep learning did not receive much attention regarding protein analysis as it is noted that little work focused on studying the protein diseases classification. Objective: The contribution of this paper is to present a deep learning approach that classifies protein diseases based on protein descriptors. Methods: Different protein descriptors are used and decomposed into modified feature descriptors. Uniquely, we introduce using Convolutional Neural Network model to learn and classify protein diseases. The modified feature descriptors are fed to the Convolutional Neural Network model on a dataset of 1563 protein sequences classified into 3 different disease classes: Aids, Tumor suppressor, and Proto oncogene. Results: The usage of the modified feature descriptors shows a significant increase in the performance of the Convolutional Neural Network model over Support Vector Machine using different kernel functions. One modified feature descriptor improved by 19.8%, 27.9%, 17.6%, 21.5%, 17.3%, and 22% for evaluation metrics: Area Under the Curve, Matthews Correlation Coefficient, Accuracy, F1-score, Recall, and Precision, respectively. Conclusion: Results show that the prediction of the proposed modified feature descriptors significantly surpasses that of Support Vector Machine model.


2018 ◽  
Vol 7 (11) ◽  
pp. 418 ◽  
Author(s):  
Tian Jiang ◽  
Xiangnan Liu ◽  
Ling Wu

Accurate and timely information about rice planting areas is essential for crop yield estimation, global climate change and agricultural resource management. In this study, we present a novel pixel-level classification approach that uses convolutional neural network (CNN) model to extract the features of enhanced vegetation index (EVI) time series curve for classification. The goal is to explore the practicability of deep learning techniques for rice recognition in complex landscape regions, where rice is easily confused with the surroundings, by using mid-resolution remote sensing images. A transfer learning strategy is utilized to fine tune a pre-trained CNN model and obtain the temporal features of the EVI curve. Support vector machine (SVM), a traditional machine learning approach, is also implemented in the experiment. Finally, we evaluate the accuracy of the two models. Results show that our model performs better than SVM, with the overall accuracies being 93.60% and 91.05%, respectively. Therefore, this technique is appropriate for estimating rice planting areas in southern China on the basis of a pre-trained CNN model by using time series data. And more opportunity and potential can be found for crop classification by remote sensing and deep learning technique in the future study.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


2019 ◽  
Vol 8 (4) ◽  
pp. 160 ◽  
Author(s):  
Bingxin Liu ◽  
Ying Li ◽  
Guannan Li ◽  
Anling Liu

Spectral characteristics play an important role in the classification of oil film, but the presence of too many bands can lead to information redundancy and reduced classification accuracy. In this study, a classification model that combines spectral indices-based band selection (SIs) and one-dimensional convolutional neural networks was proposed to realize automatic oil films classification using hyperspectral remote sensing images. Additionally, for comparison, the minimum Redundancy Maximum Relevance (mRMR) was tested for reducing the number of bands. The support vector machine (SVM), random forest (RF), and Hu’s convolutional neural networks (CNN) were trained and tested. The results show that the accuracy of classifications through the one dimensional convolutional neural network (1D CNN) models surpassed the accuracy of other machine learning algorithms such as SVM and RF. The model of SIs+1D CNN could produce a relatively higher accuracy oil film distribution map within less time than other models.


2021 ◽  
Vol 13 (19) ◽  
pp. 3953
Author(s):  
Patrick Clifton Gray ◽  
Diego F. Chamorro ◽  
Justin T. Ridge ◽  
Hannah Rae Kerner ◽  
Emily A. Ury ◽  
...  

The ability to accurately classify land cover in periods before appropriate training and validation data exist is a critical step towards understanding subtle long-term impacts of climate change. These trends cannot be properly understood and distinguished from individual disturbance events or decadal cycles using only a decade or less of data. Understanding these long-term changes in low lying coastal areas, home to a huge proportion of the global population, is of particular importance. Relatively simple deep learning models that extract representative spatiotemporal patterns can lead to major improvements in temporal generalizability. To provide insight into major changes in low lying coastal areas, our study (1) developed a recurrent convolutional neural network that incorporates spectral, spatial, and temporal contexts for predicting land cover class, (2) evaluated this model across time and space and compared this model to conventional Random Forest and Support Vector Machine methods as well as other deep learning approaches, and (3) applied this model to classify land cover across 20 years of Landsat 5 data in the low-lying coastal plain of North Carolina, USA. We observed striking changes related to sea level rise that support evidence on a smaller scale of agricultural land and forests transitioning into wetlands and “ghost forests”. This work demonstrates that recurrent convolutional neural networks should be considered when a model is needed that can generalize across time and that they can help uncover important trends necessary for understanding and responding to climate change in vulnerable coastal regions.


2021 ◽  
Author(s):  
Ewerthon Dyego de Araújo Batista ◽  
Wellington Candeia de Araújo ◽  
Romeryto Vieira Lira ◽  
Laryssa Izabel de Araújo Batista

Dengue é um problema de saúde pública no Brasil, os casos da doença voltaram a crescer na Paraíba. O boletim epidemiológico da Paraíba, divulgado em agosto de 2021, informa um aumento de 53% de casos em relação ao ano anterior. Técnicas de Machine Learning (ML) e de Deep Learning estão sendo utilizadas como ferramentas para a predição da doença e suporte ao seu combate. Por meio das técnicas Random Forest (RF), Support Vector Regression (SVR), Multilayer Perceptron (MLP), Long ShortTerm Memory (LSTM) e Convolutional Neural Network (CNN), este artigo apresenta um sistema capaz de realizar previsões de internações causadas por dengue para as cidades Bayeux, Cabedelo, João Pessoa e Santa Rita. O sistema conseguiu realizar previsões para Bayeux com taxa de erro 0,5290, já em Cabedelo o erro foi 0,92742, João Pessoa 9,55288 e Santa Rita 0,74551.


2020 ◽  
Vol 10 (12) ◽  
pp. 4303
Author(s):  
Yang Shao ◽  
Xianfeng Yuan ◽  
Chengjin Zhang ◽  
Yong Song ◽  
Qingyang Xu

Deep learning based intelligent fault diagnosis methods have become a research hotspot in the fields of fault diagnosis and the health management of rolling bearings in recent years. To effectively identify incipient faults in rotating machinery, this paper proposes a novel hybrid intelligent fault diagnosis framework based on a convolutional neural network and support vector machine (SVM). First, an improved one-dimensional convolutional neural network (1DCNN) was adopted to extract fault features, and the state information and intrinsic properties of the raw vibration signals were mined. Second, the extracted features were used to train the SVM, which was applied to classify the fault category. The proposed hybrid framework combined the excellent classification performance of the SVM for small samples and the strong feature-learning ability of CNN network. In order to tune the parameters of the SVM, an improved novel particle swarm optimization algorithm (INPSO) which combined the Tent map and Lévy flight strategy was proposed. Numerical experimental results indicated that the proposed PSO variant had a better performance in searching accuracy and convergence speed. At last, multiple groups of rolling bearing fault diagnosis experiments were carried out and experimental results showed that, with the proposed 1DCNN-INPSO-SVM model, the hybrid framework was capable of diagnosing with high precision for rolling bearings and superior to some traditional fault diagnosis methods.


Sign in / Sign up

Export Citation Format

Share Document