scholarly journals Multi-Sensor Fusion for Aerial Robots in Industrial GNSS-Denied Environments

2021 ◽  
Vol 11 (9) ◽  
pp. 3921
Author(s):  
Paloma Carrasco ◽  
Francisco Cuesta ◽  
Rafael Caballero ◽  
Francisco J. Perez-Grau ◽  
Antidio Viguria

The use of unmanned aerial robots has increased exponentially in recent years, and the relevance of industrial applications in environments with degraded satellite signals is rising. This article presents a solution for the 3D localization of aerial robots in such environments. In order to truly use these versatile platforms for added-value cases in these scenarios, a high level of reliability is required. Hence, the proposed solution is based on a probabilistic approach that makes use of a 3D laser scanner, radio sensors, a previously built map of the environment and input odometry, to obtain pose estimations that are computed onboard the aerial platform. Experimental results show the feasibility of the approach in terms of accuracy, robustness and computational efficiency.

2021 ◽  
Vol 13 (11) ◽  
pp. 285
Author(s):  
Nur Arifin Akbar ◽  
Amgad Muneer ◽  
Narmine ElHakim ◽  
Suliman Mohamed Fati

Blockchain technology is a sustainable technology that offers a high level of security for many industrial applications. Blockchain has numerous benefits, such as decentralisation, immutability and tamper-proofing. Blockchain is composed of two processes, namely, mining (the process of adding a new block or transaction to the global public ledger created by the previous block) and validation (the process of validating the new block added). Several consensus protocols have been introduced to validate blockchain transactions, Proof-of-Work (PoW) and Proof-of-Stake (PoS), which are crucial to cryptocurrencies, such as Bitcoin. However, these consensus protocols are vulnerable to double-spending attacks. Amongst these attacks, the 51% attack is the most prominent because it involves forking a blockchain to conduct double spending. Many attempts have been made to solve this issue, and examples include delayed proof-of-work (PoW) and several Byzantine fault tolerance mechanisms. These attempts, however, suffer from delay issues and unsorted block sequences. This study proposes a hybrid algorithm that combines PoS and PoW mechanisms to provide a fair mining reward to the miner/validator by conducting forking to combine PoW and PoS consensuses. As demonstrated by the experimental results, the proposed algorithm can reduce the possibility of intruders performing double mining because it requires achieving 100% dominance in the network, which is impossible.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 377
Author(s):  
Bomi Ryu ◽  
Kyung-Hoon Shin ◽  
Se-Kwon Kim

Fish muscle, which accounts for 15%–25% of the total protein in fish, is a desirable protein source. Their hydrolysate is in high demand nutritionally as a functional food and thus has high potential added value. The hydrolysate contains physiologically active amino acids and various essential nutrients, the contents of which depend on the source of protein, protease, hydrolysis method, hydrolysis conditions, and degree of hydrolysis. Therefore, it can be utilized for various industrial applications including use in nutraceuticals and pharmaceuticals to help improve the health of humans. This review discusses muscle protein hydrolysates generated from the muscles of various fish species, as well as their amino acid composition, and highlights their functional properties and bioactivity. In addition, the role of the amino acid profile in regulating the biological and physiological activities, nutrition, and bitter taste of hydrolysates is discussed.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2534
Author(s):  
Oualid Doukhi ◽  
Deok-Jin Lee

Autonomous navigation and collision avoidance missions represent a significant challenge for robotics systems as they generally operate in dynamic environments that require a high level of autonomy and flexible decision-making capabilities. This challenge becomes more applicable in micro aerial vehicles (MAVs) due to their limited size and computational power. This paper presents a novel approach for enabling a micro aerial vehicle system equipped with a laser range finder to autonomously navigate among obstacles and achieve a user-specified goal location in a GPS-denied environment, without the need for mapping or path planning. The proposed system uses an actor–critic-based reinforcement learning technique to train the aerial robot in a Gazebo simulator to perform a point-goal navigation task by directly mapping the noisy MAV’s state and laser scan measurements to continuous motion control. The obtained policy can perform collision-free flight in the real world while being trained entirely on a 3D simulator. Intensive simulations and real-time experiments were conducted and compared with a nonlinear model predictive control technique to show the generalization capabilities to new unseen environments, and robustness against localization noise. The obtained results demonstrate our system’s effectiveness in flying safely and reaching the desired points by planning smooth forward linear velocity and heading rates.


2016 ◽  
Vol 256 ◽  
pp. 319-327 ◽  
Author(s):  
Mario Rosso ◽  
Ildiko Peter ◽  
Ivano Gattelli

During the last decades under the enthusiastic and competent guidance of Mr Chiarmetta SSM processes attained in Italy at Stampal Spa (Torino) an unquestionable high level of industrial development with the production of large numbers of high performance automotive parts, like variety of suspension support, engine suspension mounts, steering knuckle, front suspension wheel, arm and rear axle. Among the most highlighted findings SSM processes demonstrated their capability to reduce the existing gap between casting and forging, moreover during such a processes there are the opportunity to better control the defect level.Purpose of this paper is to highlight the research work and the SSM industrial production attained and developed by Mr G.L. Chiarmetta, as well as to give an overview concerning some alternative methods for the production of enhanced performance light alloys components for critical industrial applications and to present an analysis of a new rheocasting process suitable for the manufacturing of high performance industrial components.


Author(s):  
Alexander Bertino ◽  
Peiman Naseradinmousavi ◽  
Atul Kelkar

Abstract In this paper, we study the analytical and experimental control of a 7-DOF robot manipulator. A model-free decentralized adaptive control strategy is presented for the tracking control of the manipulator. The problem formulation and experimental results demonstrate the computational efficiency and simplicity of the proposed method. The results presented here are one of the first known experiments on a redundant 7-DOF robot. The efficacy of the adaptive decentralized controller is demonstrated experimentally by using the Baxter robot to track a desired trajectory. Simulation and experimental results clearly demonstrate the versatility, tracking performance, and computational efficiency of this method.


2016 ◽  
Vol 50 (0) ◽  
Author(s):  
Gisele Pinto de Oliveira ◽  
Ana Luiza de Souza Bierrenbach ◽  
Kenneth Rochel de Camargo Júnior ◽  
Cláudia Medina Coeli ◽  
Rejane Sobrino Pinheiro

ABSTRACT OBJECTIVE To analyze the accuracy of deterministic and probabilistic record linkage to identify TB duplicate records, as well as the characteristics of discordant pairs. METHODS The study analyzed all TB records from 2009 to 2011 in the state of Rio de Janeiro. A deterministic record linkage algorithm was developed using a set of 70 rules, based on the combination of fragments of the key variables with or without modification (Soundex or substring). Each rule was formed by three or more fragments. The probabilistic approach required a cutoff point for the score, above which the links would be automatically classified as belonging to the same individual. The cutoff point was obtained by linkage of the Notifiable Diseases Information System – Tuberculosis database with itself, subsequent manual review and ROC curves and precision-recall. Sensitivity and specificity for accurate analysis were calculated. RESULTS Accuracy ranged from 87.2% to 95.2% for sensitivity and 99.8% to 99.9% for specificity for probabilistic and deterministic record linkage, respectively. The occurrence of missing values for the key variables and the low percentage of similarity measure for name and date of birth were mainly responsible for the failure to identify records of the same individual with the techniques used. CONCLUSIONS The two techniques showed a high level of correlation for pair classification. Although deterministic linkage identified more duplicate records than probabilistic linkage, the latter retrieved records not identified by the former. User need and experience should be considered when choosing the best technique to be used.


Author(s):  
O. Hasler ◽  
S. Nebiker

Abstract. Estimating the pose of a mobile robotic platform is a challenging task, especially when the pose needs to be estimated in a global or local reference frame and when the estimation has to be performed while the platform is moving. While the position of a platform can be measured directly via modern tachymetry or with the help of a global positioning service GNSS, the absolute platform orientation is harder to derive. Most often, only the relative orientation is estimated with the help of a sensor mounted on the robotic platform such as an IMU, with one or multiple cameras, with a laser scanner or with a combination of any of those. Then, a sensor fusion of the relative orientation and the absolute position is performed. In this work, an additional approach is presented: first, an image-based relative pose estimation with frames from a panoramic camera using a state-of-the-art visual odometry implementation is performed. Secondly, the position of the platform in a reference system is estimated using motorized tachymetry. Lastly, the absolute orientation is calculated using a visual marker, which is placed in the space, where the robotic platform is moving. The marker can be detected in the camera frame and since the position of this marker is known in the reference system, the absolute pose can be estimated. To improve the absolute pose estimation, a sensor fusion is conducted. Results with a Lego model train as a mobile platform show, that the trajectory of the absolute pose calculated independently with four different markers have a deviation < 0.66 degrees 50% of the time and that the average difference is < 1.17 degrees. The implementation is based on the popular Robotic Operating System ROS.


2021 ◽  
Vol 286 ◽  
pp. 04010
Author(s):  
Valentin Nicolae Cococi ◽  
Constantin Călinoiu ◽  
Carmen-Anca Safta

In nowadays the pneumatic controlled systems are widely used in industrial applications where valves must be operated, where there is a fire ignition risk, or in different automation systems where a positioning action is desired. The paper presents the experimental results of a pneumatic actuator controlled by a proportional control valve. The goal of the paper is to compare the experimental results with the numerical simulation results and to improve the mathematical model associated with the experiment.


2020 ◽  
Vol 36 (1) ◽  
pp. 71-80
Author(s):  
S. A Dattijo

Due to many ways by which they are exploited, insects and their products could be a very big business. They are sold for agricultural protection, crop pollination, as well as human, livestock and pet nutrition. In addition, their products are sold for pharmaceuticals, health, and the implements for research, art works and a host of other uses. This review focused on commercialization of insects and their products with a view of sharing existing knowledge on global commerce of various insects and their products. Available literature revealed that there was an increase in demand for edible insects in the United States of America and prices were as high as $150 kg-1. Similarly, between 2010 and 2015, animal feed market in the United Kingdom grew at 3.5% annually and is currently worth £5 billion. Because of its scarcity, high demand, and recognition of its healing properties, royal jelly, one of the most sought after from bee products commands astronomical price internationally. In addition, no any other industry could generate high level of employment as sericulture, especially in rural areas where it takes 11 workdays to produce a Kg of raw silk. The contribution insects and their products can give to improve the economy of a developing country such as Nigeria is considerable, but underestimated or neglected. Insects are unlikely to make a major contribution in the near future, but the idea that they are potential source of overcoming the economic problems is not as farfetched as it seemed. Therefore, there is the need to adopt an added value approach to insects and their products and sensitize as well as encourage small-scale farmers, who are disadvantaged in international market participation due to lack of access to information, services, technology or the capacity, to produce larger volumes of quality insect products.


Sign in / Sign up

Export Citation Format

Share Document