scholarly journals Aerodynamic Response and Running Posture Analysis When the Train Passes a Crosswind Region on a Bridge

2021 ◽  
Vol 11 (9) ◽  
pp. 4126
Author(s):  
Jian Yan ◽  
Tefang Chen ◽  
E Deng ◽  
Weichao Yang ◽  
Shu Cheng ◽  
...  

Trains running on a bridge face more significant safety risks. Based on the Unsteady Reynolds-Averaged Navier–Stokes turbulence model, a three-dimensional Computational Fluid Dynamics computational model of the train–bridge–wind barrier was proposed in this study to measure the transient aerodynamic load of the train. The transient aerodynamic load was input into the wind–train–bridge coupling dynamic system to perform dynamic analysis of running safety. Significant fluctuations in the aerodynamic coefficients were found when the train entered and exited the wind barrier due to the dramatic change in flow pattern. The maximum value of the derailment coefficient decreased with the height of wind barriers, which hardly affected the wheel load reduction rate. The 2 m high wind barrier had no evident influence on the running posture of a general high-speed train, while the 4 m high wind barrier was proven to have better protection. Over-protection was found with an even higher wind barrier.

2021 ◽  
Vol 11 (13) ◽  
pp. 6067
Author(s):  
Jian Yan ◽  
Tefang Chen ◽  
Shu Cheng ◽  
E Deng ◽  
Weichao Yang ◽  
...  

High-speed trains serving in a crosswind region are bearing more significant safety risks. Based on the three-dimensional (3D) Unsteady Reynolds-Averaged Navier–Stokes (URANS) turbulence model, a Computational Fluid Dynamics (CFD) computational work was conducted in the present study to predict the transient aerodynamic load of the train. The transient aerodynamic load was then employed as the input of the dynamic system to perform a dynamic analysis of running safety. Noticeable changes in the aerodynamic coefficients were found when the train entered and left the crosswind region due to the dramatic change in flow patterns. The original posture also provided significant changes to the train’s aerodynamic responses. A slightly larger maximum derailment coefficient was found on the first bogie of the leading car with a preset posture. There were obvious differences in the displacement characteristics of the three cars in the lateral direction and the rolling rotation, and the magnitude of the posture changes decreased from the leading car to the trailing car. The train with the consideration of posture was proven to withstand weaker crosswinds.


Author(s):  
Jin Shi ◽  
Dengke Ma ◽  
Ya Gao

This paper proposes a three-dimensional dynamic model for high-speed railway trains moving over curved bridges considering the transition curves, circular curves, and superelevation. Key features of this study are to consider the nonlinear geometrical relationships and creep relationships between the wheels and rail, for which the interactive iterative numerical algorithms are developed based on the equations of vertical displacement and rolling of wheelset, and the torsional resonance conditions of the vehicle–bridge system are verified. The results show that the torsional vibration will cause amplification on vertical dynamic response of the beam on the outside edge of the curve. The deficient/surplus superelevation plays an important role in the lateral and torsional angular displacements of the bridge, and the peak of the torsional resonance response can be reduced by adjusting the practical superelevation of the curve. The variations of wheel–load reduction rate and derailment coefficient in the curve section are positively correlated to the deficient/surplus superelevation. The curve radius is the key factor affecting the wear and fatigue of wheel–rail, and when the curve radius is greater than 7000 m, the wear and fatigue can be significantly reduced. Running at a deficient superelevation level can also reduce the wear and fatigue.


2014 ◽  
Vol 694 ◽  
pp. 109-113
Author(s):  
Xiang Dong Chen ◽  
Yu Gong Xu

With the increasing speed, the crosswind effect is the more and more obvious. The three dimensional aerodynamic model of the high-speed train was set up to study the aerodynamic characteristics of the train under the cross wind. Based on the vehicle system dynamics, the couple model for dynamics of wind-train-rail systems was set up to study the train safety under the wind load. The derailment coefficient and reduction rate of wheel load were analyzed under the different train speed, different wind velocity. The results of this research can provide a theoretical basis for the high-speed train safety.


2020 ◽  
Vol 8 (12) ◽  
pp. 975
Author(s):  
Cong Sun ◽  
Chunyu Guo ◽  
Chao Wang ◽  
Lianzhou Wang ◽  
Jianfeng Lin

The interactions between the main hull and demi-hull of trimarans have been arousing increasing attention, and detailed circumferential flow fields greatly influence trimaran research. In this research, the unsteady wake flow field of a trimaran was obtained by Reynolds-Averaged Navier-Stokes (RANS) equations on the basis of the viscous flow principles with consideration of the heaving and pitching of the trimaran. Then, we designed an experimental method based on particle-image velocimetry (PIV) and obtained a detailed flow field between the main hull and demi-hull of the trimaran. A trimaran model with one demi-hull made of polycarbonate material with 90% light transmission rate and a refractive index 1.58 (close to that of water 1.33) was manufactured as the experiment sample. Using polycarbonate material, the laser-sheet light-source transmission and high-speed camera recording problems were effectively rectified. Moreover, a nonstandard calibration was added into the PIV flow field measurement system. Then, we established an inverse three-dimensional (3D) distortion coordinate system and obtained the corresponding coordinates by using optics calculations. Further, the PIV system spatial mapping was corrected, and the real flow field was obtained. The simulation results were highly consistent with the experimental data, which showed the methods established in this study provided a strong reference for obtaining the detailed flow field information between the main hull and demi-hull of trimarans.


Author(s):  
Y Wang ◽  
S Komori

A pressure-based finite volume procedure developed previously for incompressible flows is extended to predict the three-dimensional compressible flow within a centrifugal impeller. In this procedure, the general curvilinear coordinate system is used and the collocated grid arrangement is adopted. Mass-averaging is used to close the instantaneous Navier-Stokes equations. The covariant velocity components are used as the main variables for the momentum equations, making the pressure-velocity coupling easier. The procedure is successfully applied to predict various compressible flows from subsonic to supersonic. With the aid of the k-ɛ turbulence model, the flow details within a centrifugal impeller are obtained using the present procedure. Predicted distributions of the meridional velocity and the static pressure are reasonable. Calculated radial velocities and flow angles are favourably compared with the measurements at the exit of the impeller.


1987 ◽  
Vol 109 (1) ◽  
pp. 71-76 ◽  
Author(s):  
J. O. Medwell ◽  
D. T. Gethin ◽  
C. Taylor

The performance of a cylindrical bore bearing fed by two axial grooves orthogonal to the load line is analyzed by solving the Navier-Stokes equations using the finite element method. This produces detailed information about the three-dimensional velocity and pressure field within the hydrodynamic film. It is also shown that the method may be applied to long bearing geometries where recirculatory flows occur and in which the governing equations are elliptic. As expected the analysis confirms that lubricant inertia does not affect bearing performance significantly.


Author(s):  
Nicola Casari ◽  
Michele Pinelli ◽  
Alessio Suman ◽  
Francesco Montomoli ◽  
Luca di Mare

Fouling and erosion are two pressing problems that severely affect gas turbine performance and life. When aircraft fly through a volcanic ash cloud the two phenomena occur simultaneously in the cold as well as in the hot section of the engine. In the high pressure turbine, in particular, the particles soften or melt due to the high gas temperatures and stick to the wet surfaces. The throat area, and hence the capacity, of the HP turbine is modified by these phenomena, affecting the engine stability and possibly forcing engine shutdown. This work presents a model for deposition and erosion in gas turbines and its implementation in a three dimensional Navier-Stokes solver. Both deposition and erosion are kept into account, together with deposit detachment due to changed flow conditions. The model is based on a statistical description of the behaviour of softened particles. The particles can stick to the surface or can bounce away, eroding the material. The sticking prediction relies on the authors’ EBFOG model. The impinging particles which do not stick to the surface are responsible for the removal of material. The model is demonstrated on a high pressure turbine vane. The performance deterioration and the throat area reduction rate are carefully monitored. The safe-to-fly time through a cloud can be inferred from the outcome of this work as important piece of on-board information for the flight crew.


2012 ◽  
Vol 253-255 ◽  
pp. 2035-2040
Author(s):  
Ye Bo Liu ◽  
Zhi Ming Liu

Numerical simulations were carried out to investigate the air flow and pressure distributions beneath high speed trains, based on the three-dimensional Reynolds-averaged Navier-Stokes equations with the SST k-ω two-equation turbulence model. The simulation scenarios were of the high speed train, the CRH2, running in the open air at four different speeds: 200km/h, 250km/h, 300km/h and 350km/h. The results show that, the highest area of pressure is located at the front underbody part of the train whist the pressure for rest of the train is relatively small. Increasing speed does not visibly increase the pressure coefficient, indicating that the pressure increases with the square of the operational speed.


Author(s):  
Mark R. Anderson ◽  
Daryl L. Bonhaus

Through-flow solvers have historically played a very prominent role in the design and analysis of axial turbomachinery. While three-dimensional, Full Navier-Stokes (FNS) CFD is taking an increasing larger role, quasi-3D through-flow methods are still widely used. Automated optimization techniques that search over a wide design space, involving many possible variables, are particularly suitable for the computationally efficient through-flow solver. Pressure-based methods derived from CFD solution techniques have gradually replaced older streamline curvature methods, due to their ability to capture flow across a wide range of Mach numbers, particularly the transonic and supersonic regimes. The through-flow approach allows for the solution of the three-dimensional problem with the computational efficiency of a two-dimensional solution. Since the losses are explicitly calculated through empirically based models, the need for detailed grid resolution to capture tiny flow entities (such as wakes and boundary layers) is also greatly reduced. The combined savings can result in computational costs as much as two orders of magnitude lower than full 3D CFD methods. A state-of-the-art through-flow solver has several features that are crucial in the design process. One of these is the ability to run in both a design and an analysis mode. Also important, is the ability to generate solutions where critical components are solved using 3D FNS, while others are run using a through-flow method. Other desirable features in a through-flow solver are: an advanced equation of state, injection and extraction ability, the handling of arbitrary (non-axial) shapes, and a link to a capable geometry generation engine. Through-flow solvers represent a unique mix of higher order numerical methods (increasingly CFD-based) coupled with empirically derived models (generally meanline based). The combination of these two methods in one solver creates a particularly challenging programming problem. This paper details the techniques required to effectively generate through-flow solutions. Special attention is given to an improved off-design loss model for compressors, as well as a transonic loss model needed for high-speed compressor and turbine flows. Validation with recognized test data along with corresponding 3D FNS CFD results are presented.


Author(s):  
Huaxing Liu ◽  
Soon Keat Tan ◽  
Jing Li ◽  
Xikun Wang

Tidal bore is a fascinating and powerful hydraulic phenomenon. In this paper, the tidal bore’s process is studied using 3D Smooth Particle Hydrodynamic (SPH) model. The Lagrangian nature of SPH suits well to the modeling of the complex fluid flow phenomenon. In the SPH method, the Navier-Stokes equations are discretized with fluid particles in the Lagrangine sense. Boundary conditions, including both no slip wall and bottom wall, are implemented using dynamic boundary particles. Using SPH, the bore’s generation together with its traverse along the channel are presented, including the description of flow field and bore’s configuration. Different types of bores’ behavior are investigated. It is observed that there is a splash of water surge up the wall and the front of the bore becomes a breaker wave when the initial water column travels at high speed. The velocity field and bore heights at different locations are visualized and discussed as well.


Sign in / Sign up

Export Citation Format

Share Document