scholarly journals An Efficient System for Automatic Blood Type Determination Based on Image Matching Techniques

2021 ◽  
Vol 11 (11) ◽  
pp. 5225
Author(s):  
Nuha Odeh ◽  
Anas Toma ◽  
Falah Mohammed ◽  
Yousef Dama ◽  
Farah Oshaibi ◽  
...  

This paper presents a fast and accurate system to determine the type of blood automatically based on image processing. Blood type determination is important in emergency situations, where there is a need for blood transfusion to save lives. The traditional blood determination techniques are performed manually by a specialist in medical labs, where the result requires a long time or may be affected by human error. This may cause serious consequences or even endanger people’s lives. The proposed approach performs blood determination in real-time with low cost using any available mobile device equipped with a camera. A total of 500 blood samples were processed in this study using different image matching techniques including oriented fast and rotated brief (ORB), scale invariant feature transform (SIFT), and speed-up robust feature (SURF). The evaluation results show that our proposed system, which adopts the ORB algorithm, is the fastest and the most accurate among the state-of-the-art systems. It can achieve an accuracy of 99.6% in an average time of 250 ms.

The railway system is one of the most widely used modes of transportation due to its low cost. To keep the railway system running smoothly, continuous track monitoring is needed. These days, the railway system is manually supervised. As a result, there is a greater risk of disasters, such as fatalities, occurring as a result of human error while monitoring. The main problem with manual system monitoring is that it takes a long time to process all of the necessary data. Since railway tracks are built over thousands of miles, it is virtually impossible to manually control the device over such a longdistance. At railway crossings, a lot of accidents happen. Crossing gates are usually opened and closed after receiving direct input from the station. If there is a delay in obtaining information from the station, there is a risk of swearing incidents. The main goal of this research is to simplify and protect the railway system. The proposed system employs Force Sensitive Resistor (FSR) detectors for automatic side road crossing protection. Any type of breakage, as well as vibration, can be efficiently detected with a higher degree of precision using Light Dependent Resistor (LRR) and laser detectors. In the event of an unexpected situation, such as an accident, the GSM module will begin communicating via message with the nearest control room for assistance. Sonar sensors are often used for obstacle avoidance when something unexpectedly appears in front of the train. The Internet of Things (IoT) has been added to the system to allow it to be monitored from anywhere in the sphere. The Arduino UNO is a microcontroller that serves as the system's backbone. The framework has the potential to be extremely beneficial to our country's railway economic growth.


Author(s):  
Sujatha C. N

Blood group testing is one of the vital tasks in the area of medicine, in which it is very important during emergency situation before victim requires blood transfusion. Presently, the blood tests are conducted manually by laboratory staff members, which is time consuming process in the emergency situations. Blood group identification within shortest possible time without any human error is an important factor and very much essential. Image processing paves a way in determining blood type without human intervention. Images which are captured using high resolution microscopic camera during the blood slide test in the laboratory which are used for blood type evaluation. The image processing techniques which include thresholding and morphological operations are used. The blood image is separated into sample wise and blood type is decided based on the agglutination effects in those sample images. This project facilitates the identification of blood group even by common people who are unaware of the blood typing procedure.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4587
Author(s):  
Hyoseon Jang ◽  
Sangkyun Kim ◽  
Suhong Yoo ◽  
Soohee Han ◽  
Hong-Gyoo Sohn

A large amount of information needs to be identified and produced during the process of promoting projects of interest. Thermal infrared (TIR) images are extensively used because they can provide information that cannot be extracted from visible images. In particular, TIR oblique images facilitate the acquisition of information of a building’s facade that is challenging to obtain from a nadir image. When a TIR oblique image and the 3D information acquired from conventional visible nadir imagery are combined, a great synergy for identifying surface information can be created. However, it is an onerous task to match common points in the images. In this study, a robust matching method of image pairs combined with different wavelengths and geometries (i.e., visible nadir-looking vs. TIR oblique, and visible oblique vs. TIR nadir-looking) is proposed. Three main processes of phase congruency, histogram matching, and Image Matching by Affine Simulation (IMAS) were adjusted to accommodate the radiometric and geometric differences of matched image pairs. The method was applied to Unmanned Aerial Vehicle (UAV) images of building and non-building areas. The results were compared with frequently used matching techniques, such as scale-invariant feature transform (SIFT), speeded-up robust features (SURF), synthetic aperture radar–SIFT (SAR–SIFT), and Affine SIFT (ASIFT). The method outperforms other matching methods in root mean square error (RMSE) and matching performance (matched and not matched). The proposed method is believed to be a reliable solution for pinpointing surface information through image matching with different geometries obtained via TIR and visible sensors.


2018 ◽  
Author(s):  
Rizki Eka Putri ◽  
Denny Darlis

This article was under review for ICELTICS 2018 -- In the medical world there is still service dissatisfaction caused by lack of blood type testing facility. If the number of tested blood arise, a lot of problems will occur so that electronic devices are needed to determine the blood type accurately and in short time. In this research we implemented an Artificial Neural Network on Xilinx Spartan 3S1000 Field Programable Gate Array using XSA-3S Board to identify the blood type. This research uses blood sample image as system input. VHSIC Hardware Discription Language is the language to describe the algorithm. The algorithm used is feed-forward propagation of backpropagation neural network. There are 3 layers used in design, they are input, hidden1, and output. At hidden1layer has two neurons. In this study the accuracy of detection obtained are 92%, 92%, 92%, 90% and 86% for 32x32, 48x48, 64x64, 80x80, and 96x96 pixel blood image resolution, respectively.


Author(s):  
Yasunobu Iwai ◽  
Koichi Shinozaki ◽  
Daiki Tanaka

Abstract Compared with space parts, consumer parts are highly functional, low cost, compact and lightweight. Therefore, their increased usage in space applications is expected. Prior testing and evaluation on space applicability are necessary because consumer parts do not have quality guarantees for space application [1]. However, in the conventional reliability evaluation method, the test takes a long time, and the problem is that the robustness of the target sample can’t be evaluated in a short time. In this report, we apply to the latest TSOP PEM (Thin Small Outline Package Plastic Encapsulated Microcircuit) an evaluation method that combines preconditioning and HALT (Highly Accelerated Limit Test), which is a test method that causes failures in a short time under very severe environmental conditions. We show that this method can evaluate the robustness of TSOP PEMs including solder connections in a short time. In addition, the validity of this evaluation method for TSOP PEM is shown by comparing with the evaluation results of thermal shock test and life test, which are conventional reliability evaluation methods.


2006 ◽  
Vol 1 (2) ◽  
Author(s):  
E. v. Münch ◽  
G. Amy ◽  
J. F. Fesselet

This paper describes the potential of ecological sanitation (ecosan) to provide sustainable excreta disposal in emergency situations and in peri-urban areas or slums in developing countries. At the present time, pit latrines are the most common form of excreta disposal both for emergency situations and in low-income peri-urban areas or slums. Although not intended to be a long-term solution, pit latrines provided during emergencies are often used for a long time (more than six months to years). This practice is not sustainable if the area is prone to flooding or there are soil conditions that allow groundwater pollution in areas where groundwater is used for drinking water, to name but two of the main factors. We propose eight criteria for the applicability of ecosan based on analysis of three case studies representing different types of emergency situations. The two most important criteria are awareness and expertise in ecosan within the aid agencies, and availability of standardised, lightweight toilet units that are quick to assemble and easy to transport (e.g. container for faeces, and urine diversion squatting pan made of impact-resistant molded polypropylene). Such toilets could be moved to, or replicated in, other areas in need after the emergency (peri-urban areas or slums). This would provide benefits for Millennium Development Goals achievements (targets on hunger, child mortality, sanitation and slum dwellers) at lower cost than conventional sanitation systems. Costs for sanitation systems should be compared based on the entire system (toilet, transport, treatment, reuse in agriculture), using Net Present Value analysis for capital, and operating and maintenance costs.


2015 ◽  
Vol 2 (3-4) ◽  
pp. 201-205
Author(s):  
Igor Ille ◽  
Sebastian Mojrzisch ◽  
Jens Twiefel

Abstract Ultrasonic actuators are used for a wide field of applications. The vibration energy can be used to realize many processes like ultrasonic welding or bonding. Furthermore there are many processes which run more efficient and faster combined with ultrasonic vibration like ultrasonic-assisted turning or drilling. Piezoelectric transducers are the main part of those applications. Most of the applications have a time-variant load behavior and need an amplitude feedback control to guarantee a stable process. To ensure correct function tests of the feedback control systems have to be done. In this case the processes have to be executed in association with a high number of cycles. To emulate the behavior of the environment the automotive and aerospace industries use hardware in the loop systems since a long time but there is no such a method for ultrasonic systems. This paper presents a method to realize high dynamic load emulation for different ultrasonic applications. Using a piezoelectric transformer it is possible to reproduce load curves by active damping on the secondary side of the transformer using a current proportional digital feedback circuit. A theoretical and experimental study of hardware in the loop system for ultrasonic applications is given by this paper. The present system allows testing a wide field of feedback control algorithms with high flexibility and a high number of cycles by utilization of low-cost components. This proceeding decreases design periods in association with feedback control.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3694
Author(s):  
Luminita Georgeta Confederat ◽  
Cristina Gabriela Tuchilus ◽  
Maria Dragan ◽  
Mousa Sha’at ◽  
Oana Maria Dragostin

Despite the advantages presented by synthetic polymers such as strength and durability, the lack of biodegradability associated with the persistence in the environment for a long time turned the attention of researchers to natural polymers. Being biodegradable, biopolymers proved to be extremely beneficial to the environment. At present, they represent an important class of materials with applications in all economic sectors, but also in medicine. They find applications as absorbers, cosmetics, controlled drug delivery, tissue engineering, etc. Chitosan is one of the natural polymers which raised a strong interest for researchers due to some exceptional properties such as biodegradability, biocompatibility, nontoxicity, non-antigenicity, low-cost and numerous pharmacological properties as antimicrobial, antitumor, antioxidant, antidiabetic, immunoenhancing. In addition to this, the free amino and hydroxyl groups make it susceptible to a series of structural modulations, obtaining some derivatives with different biomedical applications. This review approaches the physico-chemical and pharmacological properties of chitosan and its derivatives, focusing on the antimicrobial potential including mechanism of action, factors that influence the antimicrobial activity and the activity against resistant strains, topics of great interest in the context of the concern raised by the available therapeutic options for infections, especially with resistant strains.


2004 ◽  
Vol 50 (1) ◽  
pp. 185-191 ◽  
Author(s):  
J.E. Ebdon ◽  
J.L. Wallis ◽  
H.D. Taylor

Antibiotic resistance profiling (ARP) is a potentially useful method for distinguishing faecal bacteria according to host source. This phenotypic approach has cost benefits over genotypic methods, but existing protocols are time-consuming and manual data handling is open to human error. A simplified, low-cost approach to the ARP technique was developed that used automated data recording techniques combined with simple statistical analyses to compare isolates of the genus Enterococcus from various faecal sources. An initial battery of 21 antibiotics (at up to four concentrations) was chosen for source discrimination. Images of growth or non-growth in microplate wells were stored as bitmaps and converted to binary data to form a database of known antibiotic resistance profiles. Discriminant function analysis (DFA) showed that the average rate of isolates correctly classified by the database (wastewater vs non-wastewater) was 86%. Once the more discriminating antibiotics and their concentrations had been identified, it was possible to reduce the number of tests from 80 to 18 whilst increasing the number of correctly classified human isolates. ARP could offer a low-cost and rapid means of identifying sources of faecal pollution. As such, the technique may be of particular benefit to developing countries, where water quality may have a significant impact on health and where cost is a major factor when choosing environmental management technology.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5697
Author(s):  
Chang Sun ◽  
Shihong Yue ◽  
Qi Li ◽  
Huaxiang Wang

Component fraction (CF) is one of the most important parameters in multiple-phase flow. Due to the complexity of the solid–liquid two-phase flow, the CF estimation remains unsolved both in scientific research and industrial application for a long time. Electrical resistance tomography (ERT) is an advanced type of conductivity detection technique due to its low-cost, fast-response, non-invasive, and non-radiation characteristics. However, when the existing ERT method is used to measure the CF value in solid–liquid two-phase flow in dredging engineering, there are at least three problems: (1) the dependence of reference distribution whose CF value is zero; (2) the size of the detected objects may be too small to be found by ERT; and (3) there is no efficient way to estimate the effect of artifacts in ERT. In this paper, we proposed a method based on the clustering technique, where a fast-fuzzy clustering algorithm is used to partition the ERT image to three clusters that respond to liquid, solid phases, and their mixtures and artifacts, respectively. The clustering algorithm does not need any reference distribution in the CF estimation. In the case of small solid objects or artifacts, the CF value remains effectively computed by prior information. To validate the new method, a group of typical CF estimations in dredging engineering were implemented. Results show that the new method can effectively overcome the limitations of the existing method, and can provide a practical and more accurate way for CF estimation.


Sign in / Sign up

Export Citation Format

Share Document