scholarly journals Spherical Polydopamine-Modified Carbon-Felt Cathode with an Active Indole Structure for Efficient Hydrogen Peroxide Electroproduction

2021 ◽  
Vol 11 (12) ◽  
pp. 5371
Author(s):  
Lei Chen ◽  
Sicheng Yuan ◽  
Huaiyuan Wang ◽  
Yanji Zhu ◽  
Dengyu Fu ◽  
...  

As one of the most promising methods for H2O2 production, H2O2 electroproduction has received increasingly more attention. In this study, a spherical particle polydopamine (pDA) modified carbon felt (noted as ht-pDA/ACF) for H2O2 production was fabricated. At a constant potential of 2.0 V and pH of 1.0, the H2O2 production of the ht-pDA/ACF cathode reached 220 mg/L after 6 h of electrolyzing, compared to the 30 mg/L H2O2 production of raw carbon felt. Firstly, the spherical pDA exposes more active sites that are favorable to the 2e− ORR compared to pDA film. Secondly, the ring cleavage and re-cyclization of indole structure in the pDA during electrolyzing could form the radicals that act as the intermediate to the H2O2 formation. This research exhibits a low-cost method to modify carbon materials for effective H2O2 electroproduction. The ht-pDA/ACF cathode is promising for green H2O2 production and wastewater treatment.

Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2263 ◽  
Author(s):  
Xiaoning Wang ◽  
Dan Wu ◽  
Xinhui Song ◽  
Wei Du ◽  
Xiangjin Zhao ◽  
...  

Polyaniline has been widely used in high-performance pseudocapacitors, due to its low cost, easy synthesis, and high theoretical specific capacitance. However, the poor mechanical properties of polyaniline restrict its further development. Compared with polyaniline, functionalized carbon materials have excellent physical and chemical properties, such as porous structures, excellent specific surface area, good conductivity, and accessibility to active sites. However, it should not be neglected that the specific capacity of carbon materials is usually unsatisfactory. There is an effective strategy to combine carbon materials with polyaniline by a hybridization approach to achieve a positive synergistic effect. After that, the energy storage performance of carbon/polyaniline hybridization material has been significantly improved, making it a promising and important electrode material for supercapacitors. To date, significant progress has been made in the synthesis of various carbon/polyaniline binary composite electrode materials. In this review, the corresponding properties and applications of polyaniline and carbon hybrid materials in the energy storage field are briefly reviewed. According to the classification of different types of functionalized carbon materials, this article focuses on the recent progress in carbon/polyaniline hybrid materials, and further analyzes their corresponding properties to provide guidance for the design, synthesis, and component optimization for high-performance supercapacitors.


2021 ◽  
Author(s):  
Zhixing Mou ◽  
Yue-Wen Mu ◽  
Lijia Liu ◽  
Daili Cao ◽  
Shuai Chen ◽  
...  

Abstract Developing efficient metal-free catalysts to achieve electrochemical synthesis of hydrogen peroxide (H2O2) is crucial for substituting traditional energy-intensive anthraquinone process. Heteroatom-doped carbon materials have shown great potential toward 2e-pathway for catalyzing oxygen reduction to hydrogen peroxide (ORHP). However, conventional nanocarbon electrocatalysts show slow kinetics toward ORHP due to the weak binding strength with OOH* intermediate, resulting reduction of O2 to H2O. Here, sulfur and nitrogen dual-doped graphene (SNC) electrocatalyst consisting of S-C-N-C functional group are synthesized through hydrothermal self-assembly and nitridation processes with thiourea as sulfur source. In S-C-N-C functional group, pentagon-S and pyrrolic-N are covalently grafted onto the edge of graphene and produce marginal carbon ring defects, which provide highly active sites for catalyzing ORHP. The obtained SNC catalysts deliver an outstanding ORHP activity and selectivity for H2O2 production, while retaining remarkable stability. The experimental and computational results reveal that marginal S-C-N-C functional groups afford an appropriate adsorption strength with OOH* intermediate and a low reaction barrier as well, which are essential for the activity of ORHP.


2021 ◽  
Vol 2079 (1) ◽  
pp. 012002
Author(s):  
Yanling Wu ◽  
Huiji Jiao ◽  
Mingqian Hou ◽  
Peng Zhang

Abstract Catalyst for ORR is important in the field of energy conversion. Previous research has shown that nanoparticle-embedded into N-doped carbon materials are a good ORR candidates. Here, Fe2O3/N-doped biomass carbon (named Fe2O3/N-bio-C) ORR catalyst via a pyrolysis process of mixture from the Heme precursor and biomass material (named poplar flowers). The as-synthesized electrocatalyst of Fe2O3/N-bio-C exhibits good electroactivity due to the formation of Fe2O3 nanoparticle active sites and abundant N-containing groups. The work points the way to synthesize the low-cost Fe-based N-doped biomass carbon ORR catalysts.


2020 ◽  
Author(s):  
Minsu Gu ◽  
Do-Yeon Lee ◽  
Jinhong Mun ◽  
Dongseok Kim ◽  
Haein Cho ◽  
...  

Abstract Solar-driven photocatalytic production of hydrogen peroxide (H2O2) requires only sunlight, oxygen, and water, making it a green and sustainable alternative to conventional H2O2 production processes. We present photocatalytic carbon dots (CDs) as a new candidate for high-performance H2O2 production. Owing to the generation of an excellent charge carrier and the presence of various oxygen-containing functional groups, CDs showed an outstanding H2O2 production capability of 609.4 μmol g-1 h-1 even in the absence of an electron donor, demonstrating promising self-electron-donating capabilities. Hydroxyl groups on their surface, in particular, serve a dual role as photocatalytic active sites and as electron and proton donors toward the oxygen reduction reaction (ORR). The photocatalytic activity of CDs was significantly improved to 1187.8 μmol g-1 by functionalizing their surfaces with anthraquinone (AQ) as a co-catalyst; it promoted the charge carrier separation and electrochemically favors the two-electron pathway of ORR. These carbon-based metal-free nanohybrids that are a unique combination of CDs and AQ could offer insights into designing efficient photocatalysts for future solar-to-H2O2 conversion systems.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5607
Author(s):  
Victor M. Carriere ◽  
Jolin P. Rodrigues ◽  
Chao Tan ◽  
Prabhu Arumugam ◽  
Scott Poh

Oxidative stress, an excess of endogenous or exogenous reactive oxygen species (ROS) in the human body, is closely aligned with inflammatory responses. ROS such as hydrogen peroxide (H2O2), superoxide, and radical hydroxyl ions serve essential functions in fighting infection; however, chronic elevation of these species irreversibly damages cellular components. Given the central role of inflammation in a variety of diseases, including Alzheimer’s disease and rheumatoid arthritis, a low-cost, extracellular, non-invasive assay of H2O2 measurement is needed. This work reports the use of a platinum microelectrode array (Pt MEA)-based ceramic probe to detect time- and concentration-dependent variations in H2O2 production by activated RAW 264.7 macrophages. First, these cells were activated by lipopolysaccharide (LPS) to induce oxidative stress. Chronoamperometry was then employed to detect the quantity of H2O2 released by cells at various time intervals up to 48 h. The most stimulatory concentration of LPS was identified. Further experiments assessed the anti-inflammatory effect of dexamethasone (Dex), a commonly prescribed steroid medication. As expected, the probe detected significantly increased H2O2 production by LPS-doped macrophages, subsequently diminishing the pro-inflammatory effect in LPS-doped cells treated with Dex. These results strongly support the use of this probe as a non-invasive, robust, point-of-care test of inflammation, with a high potential for multiplexing in further studies.


2013 ◽  
Vol 726-731 ◽  
pp. 2521-2525
Author(s):  
Zhi Yong Zhang ◽  
De Li Wu

Coking wastewater is a kind of recalcitrant wastewater including complicate compositions. Advanced treatment of coking wastewater by Fenton-Like reaction using pyrite as catalyst was investigated in this paper. The results show that the chemical oxygen demand (COD) of coking wastewater decreased significantly by method of coagulation combined with two-stage oxidation reaction. COD of wastewater can decrease from 250mg/l to 45mg/l after treatment, when 2g/L pyrite was used in each stage oxidation and the dosage of hydrogen peroxide (H2O2) is 0.2ml/l for first stage treatment, 0.1ml/l for second stage treatment respectively. The pyrite is effective to promote Fenton-Like reaction with low cost due to high utilization efficiency of H2O2, moreover, catalyst could be easily recovered and reused. The Fenton-Like reaction might be used as a potential alternative to advanced treatment of recalcitrant wastewater.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shan Wang ◽  
Aolin Lu ◽  
Chuan-Jian Zhong

AbstractAs a promising substitute for fossil fuels, hydrogen has emerged as a clean and renewable energy. A key challenge is the efficient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efficient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active, stable, and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use, which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity, stability, and efficiency. This will be followed by outlining current knowledge on the two half-cell reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be discussed. New strategies and insights in exploring the synergistic structure, morphology, composition, and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally, future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efficient production of hydrogen from water splitting electrolysis will also be outlined.


Sign in / Sign up

Export Citation Format

Share Document