scholarly journals Real Driving Emission Calibration—Review of Current Validation Methods against the Background of Future Emission Legislation

2021 ◽  
Vol 11 (12) ◽  
pp. 5429
Author(s):  
Johannes Claßen ◽  
Sascha Krysmon ◽  
Frank Dorscheidt ◽  
Stefan Sterlepper ◽  
Stefan Pischinger

Reducing air pollution caused by emissions from road traffic, especially in urban areas, is an important goal of legislators and the automotive industry. The introduction of so-called “Real Driving Emission” (RDE) tests for the homologation of vehicles with internal combustion engines according to the EU6d legislation was a fundamental milestone for vehicle and powertrain development. Due to the introduction of non-reproducible on-road emission tests with “Portable Emission Measurement Systems” (PEMS) in addition to the standardized emission tests on chassis dynamometers, emission aftertreatment development and validation has become significantly more complex. For explicit proof of compliance with the emission and fuel consumption regulations, the legislators continue to require the “Worldwide Harmonized Light Duty Vehicle Test Cycle” (WLTC) on a chassis dynamometer. For calibration purposes, also various RDE profiles are conducted on the chassis dynamometer. However, the combination of precisely defined driving profiles on the chassis dynamometer and the dynamics-limiting boundary conditions in PEMS tests on the road still lead to discrepancies between the certified test results and the real vehicle behavior. The expected future emissions standards to replace EU6d will therefore force even more realistic RDE tests. This is to be achieved by significantly extending the permissible RDE test boundary conditions, such as giving more weight to the urban section of an RDE test. In addition, the introduction of limit values for previously unregulated pollutants such as nitrogen dioxide (NO2), nitrous oxide (N2O), ammonia (NH3) and formaldehyde (CH2O) is being considered. Furthermore, the particle number (for diameters of solid particles > 10 nm: PN10), the methane (CH4) emissions and emissions of non-methane organic gases (NMOG) shall be limited and must be tested. To simplify the test procedure in the long term, the abandonment of predefined chassis dyno emission tests to determine the pollutant emission behavior is under discussion. Against this background, current testing, validation, and development methods are reviewed in this paper. New challenges and necessary adaptations of current approaches are discussed and presented to illustrate the need to consider future regulatory requirements in today’s approaches. Conclusions are drawn and suggestions for a robust RDE validation procedure are formulated.

2019 ◽  
Vol 178 (3) ◽  
pp. 198-202
Author(s):  
Barbara SOKOLNICKA ◽  
Paweł FUĆ ◽  
Natalia SZYMLET ◽  
Maciej SIEDLECKI ◽  
Rafał GRZESZCZYK

The article presents toxic exhaust components emission measurement results as well as solid particles mass and number. The test involved a direct gasoline injection engine, in which special attention should be paid to the particulates number emission. Small diameters of nanoparticles make them particularly dangerous to human health. Nowadays, vehicle engines are constantly improved and modernized as a result of the need to meet existing exhaust gas emission standards. One of the few ways to determine the actual content of toxic and harmful compounds in the exhaust gases is the RDE (Real Driving Emissions) procedure, the requirements of which apply from 2016 for new vehicles, and from 2019 will apply to all registered passenger cars. The RDE procedure does not replace the WLTP (World Light-Duty Vehicle Test Procedure), but complements it. The tests on the dynamometer are separated from external conditions such as traffic volume or congestion and are not a sufficient indicator of emissions in real traffic conditions.


2021 ◽  
Vol 70 (2) ◽  
pp. 35-64
Author(s):  
Sebastian Dominik Dziubak

The paper presents the composition of atmospheric air as a mixture of gases that make up the solid and variable components, and the definitions of air pollutants are referenced. Gaseous and solid pollutants (dust) of the atmospheric air have been defined. Dusts were divided according to various criteria and their properties were given. Exemplary courses of immission of the fraction of solid particles are given, indicating a strong dependence of the immission on the seasons, days of the week and day and night. The sources and characteristics of artificial and natural pollutants in the atmospheric air are presented. It has been shown that the main sources of anthropogenic pollution in addition to industry and the automotive industry. Cars are a source of gaseous and particulate pollutants PM, and they also emit pollution from brake and clutch lining wear, as well as from tire and road wear. The main sources of natural air pollution were discussed, including volcanic eruptions, fires in landfills, forests, steppes and sand storms, as well as mineral dust (road dust) carried from the ground by vehicles. The properties of road dust are discussed: chemical and fractional composition, density, dust concentration in the air. It has been shown that the two basic components of the dust, silica and corundum, whose share in dust reaches 95%, also have the highest hardness, which may have a decisive influence on the wear of engine components. Various valuesof dust concentration in the air were presented depending on the type and condition of the ground and the conditions of use of vehicles. Keywords: mechanical engineering, internal combustion engines, air pollution sources, road dust


Transport ◽  
2004 ◽  
Vol 19 (1) ◽  
pp. 24-27 ◽  
Author(s):  
Algis Butkus ◽  
Saugirdas Pukalskas

Looking forward to Lithuania becoming a member of the EU it is very important to use a larger amount of renewing fuel. Based on economic and environmental considerations in Lithuania, we are interested in studying the effects of ethanol contents in the blended ethanol‐petrol fuel on the engine performance and pollutant emission of SI engine. Therefore, we used engine test facilities to investigate the effects on the engine performance and pollutant emission of 3,5 % and 7,0 % ethanol in the fuel blend and special additives, which reduce emissions and increase octane rating. The tests were carried out in the laboratory on a chassis dynamometer with two different cars. The experiment results showed that ethanol used in a fuel blend with petrol had a positive influence on engine performance and exhaust emission.


2015 ◽  
Vol 2503 (1) ◽  
pp. 128-136 ◽  
Author(s):  
Bin Liu ◽  
H. Christopher Frey

Accurate estimation of vehicle activity is critically important for the accurate estimation of emissions. To provide a benchmark for estimation of vehicle speed trajectories such as those from traffic simulation models, this paper demonstrates a method for quantifying light-duty vehicle activity envelopes based on real-world activity data for 100 light-duty vehicles, including conventional passenger cars, passenger trucks, and hybrid electric vehicles. The vehicle activity envelope was quanti-fied in the 95% frequency range of acceleration for each of 15 speed bins with intervals of 5 mph and a speed bin for greater than 75 mph. Potential factors affecting the activity envelope were evaluated; these factors included vehicle type, transmission type, road grade, engine displacement, engine horsepower, curb weight, and ratio of horsepower to curb weight. The activity envelope was wider for speeds ranging from 5 to 20 mph and narrowed as speed increased. The latter was consistent with a constraint on maximum achievable engine power demand. The envelope was weakly sensitive to factors such as type of vehicle, type of transmission, road grade, and engine horsepower. The effect of road grade on cycle average emissions rates was evaluated for selected real-word cycles. The measured activity envelope was compared with those of dynamometer driving cycles, such as the federal test procedure, highway fuel economy test, SC03, and US06 cycles. The effect of intervehicle variability on the activity envelope was minor; this factor implied that the envelope could be quantified based on a smaller vehicle sample than used for this study.


Author(s):  
Qing Li ◽  
Fengxiang Qiao ◽  
Lei Yu ◽  
Shuyan Chen ◽  
Tiezhu Li

The MOVES is a tool to estimate on- and off-road emissions, in which 23 operating mode identification bins were defined based on vehicles’ specific power, speed, and acceleration. Bin 1 indicates an idling mode with the speed within 1.0 mph. However, the speed boundary in an earlier model of MOBILE 6.2 was 2.5 mph. Neither the change in the idling definition of the two models nor the speed boundary were investigated and discussed. This study proposed a method to theoretically redefine the idle boundary by characterizing vehicle emission rates. Vehicle speeds close to 0 mph were carefully studied based on 10,000-mile on-board emission tests in the state of Texas. A portable emission measurement system was used to detect real-time emissions from a 12-year-old gasoline light-duty vehicle, while the vehicle’s activity information was collected from an On-Board Diagnostic (OBD) II port. Power spectral density analysis was conducted on the collected emission and fuel consumption rates to identify a cut-off point that separates the frequency period with higher and lower energy. A Chebeshev I filter was designed to remove the high-frequency component to visualize the variables of emissions and fuel consumption on the vehicle’s moving trend lines. Based on observation and analysis results, 2.26 mph was identified as a boundary for an idle mode at an acceptance level of 95% significant change. It is recommended that the proposed method be applied to the emissions of more different types of vehicles with a wide range of mileages to validate the newly defined idle boundary.


Author(s):  
Kyle E. Niemeyer ◽  
Shane R. Daly ◽  
William J. Cannella ◽  
Christopher L. Hagen

Low-temperature combustion (LTC) engine concepts such as homogeneous charge compression ignition (HCCI) offer the potential of improved efficiency and reduced emissions of nitrogen oxide (NOx) and particulates. However, engines can only successfully operate in HCCI mode for limited operating ranges that vary depending on the fuel composition. Unfortunately, traditional ratings such as octane number (ON) poorly predict the auto-ignition behavior of fuels in such engine modes, and metrics recently proposed for HCCI engines have areas of improvement when wide ranges of fuels are considered. In this study, a new index for ranking fuel suitability for LTC engines was defined, based on the fraction of potential fuel savings achieved in the federal test procedure (FTP-75) light-duty vehicle driving cycle. Driving cycle simulations were performed using a typical light-duty passenger vehicle, providing pairs of engine speed and load points. Separately, single-zone naturally aspirated HCCI engine simulations were performed for a variety of fuels in order to determine the operating envelopes for each. These results were combined to determine the varying improvement in fuel economy offered by fuels, forming the basis for a fuel performance index. Results showed that, in general, lower octane fuels performed better, resulting in higher LTC fuel index values; however, ON alone did not predict fuel performance.


Sign in / Sign up

Export Citation Format

Share Document