scholarly journals Directed Energy Deposition-Arc (DED-Arc) and Numerical Welding Simulation as a Hybrid Data Source for Future Machine Learning Applications

2021 ◽  
Vol 11 (15) ◽  
pp. 7075
Author(s):  
Jan Reimann ◽  
Stefan Hammer ◽  
Philipp Henckell ◽  
Maximilian Rohe ◽  
Yarop Ali ◽  
...  

This research presents a hybrid approach to generate sample data for future machine learning applications for the prediction of mechanical properties in directed energy deposition-arc (DED-Arc) using the GMAW process. DED-Arc is an additive manufacturing process which offers a cost-effective way to generate 3D metal parts, due to its high deposition rate of up to 8 kg/h. The mechanical properties additively manufactured wall structures made of the filler material G4Si1 (ER70 S-6) are shown in dependency of the t8/5 cooling time. The numerical simulation is used to link the process parameters and geometrical features to a specific t8/5 cooling time. With an input of average welding power, welding speed and geometrical features such as wall thickness, layer height and heat source size a specific temperature field can be calculated for each iteration in the simulated welding process. This novel approach allows to generate large, artificial data sets as training data for machine learning methods by combining experimental results to generate a regression equation based on the experimentally measured t8/5 cooling time. Therefore, using the regression equations in combination with numerically calculated t8/5 cooling times an accurate prediction of the mechanical properties was possible in this research with an error of only 2.6%. Thus, a small set of experimentally generated data set allows to achieve regression equations which enable a precise prediction of mechanical properties. Moreover, the validated numerical welding simulation model was suitable to achieve an accurate calculation of the t8/5 cooling time, with an error of only 0.3%.

Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 282 ◽  
Author(s):  
Gyeong Yun Baek ◽  
Gwang Yong Shin ◽  
Ki Yong Lee ◽  
Do Sik Shim

This study focused on the mechanical and metallurgical characteristics of high-wear-resistance steel (HWS) deposited using directed energy deposition (DED) for metal substrate hardfacing or repairing. As post-deposition heat treatment changes the metallurgical characteristics of deposits, the effect of post-deposition heat treatment on the mechanical properties was investigated via microstructure observation and by conducting hardness, wear, and impact tests. The obtained micro-images showed that the deposited HWS layers exhibit cellular and columnar dendrites, and the microstructure of heat-treated HWS (HT-HWS) transformed its phase during quenching and tempering. The hardness and wear resistance of the HT-HWS deposits were higher than those of the HWS deposited specimen, whereas the latter exhibited a higher fracture toughness. The matrix microstructure and carbide characteristics, which are characterized by the chemical composition of the materials, significantly influenced the mechanical properties.


1996 ◽  
Vol 460 ◽  
Author(s):  
W. O. Soboyejo ◽  
A. B. O. Soboyejo ◽  
Y. Ni ◽  
C. Mercer

In a recent paper, Mercer and Soboyejo [1] demonstrated the Hall-Petch dependence of basic room- and elevated-temperature (815°C) mechanical properties (0.2% offset strength), ultimate tensile strength, plastic elongation to failure and fracture toughness) on the average equiaxed/lamellar grain size. Simple Hall-Petch behavior was shown to occur in a wide range of extruded duplex α2-γ alloys (Ti-48A1, Ti-48Al-1.4Mn Ti-48Al-2Mn and Ti-48Al-1.5Cr). As in steels and other materials [2–5], simple Hall-Petch equations with were derived for the above properties [1]. However, the Hall-Petch equations did not include the effect of other variables that can affect to the basic mechanical properties of gamma alloys. Multiple linear regression equations for the prediction of the combined effects of several (alloying, microstructure and temperature) variables on basic mechanical properties temperature are presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document