scholarly journals Multipurpose System for Cryogenic Energy Storage and Tri-Generation in a Food Factory: A Case Study of Producing Frozen French Fries

2021 ◽  
Vol 11 (17) ◽  
pp. 7882
Author(s):  
Dimityr Popov ◽  
Stepan Akterian ◽  
Kostadin Fikiin ◽  
Borislav Stankov

This contribution elaborates on a futuristic hybrid concept for the multifunctional employment of a liquid air energy storage (LAES) system for combined heat, cold and power production (tri-generation) in a food factory, thereby providing a substantial part of the energy demand for various unit operations and enhancing the round-trip efficiency (RTE) of LAES. A processing line for frozen French fries, with relatively high heating and refrigeration demands, is used as a case study. The total useful energy output per charge/discharge cycle is 61,677 kWh (i.e., 38,295 kWh of electricity, 19,278 kWh of heating, and 4104 kWh of refrigeration). The estimated tri-generation RTE of the studied system reaches 55.63%, which appears to be 1.2 times higher than the RTE of a classical standalone LAES system with the same power input, considered as a baseline. In a broader context, such a performance enhancement by amalgamating food and energy technologies can make cryogenic energy storage a more viable grid balancing option capable of substantially increasing the share of renewables in the energy supply mix.

2017 ◽  
Vol 12 (3) ◽  
pp. 54-68 ◽  
Author(s):  
Fehmi Görkem Üçtuğ ◽  
Vedat Can Baltalı

This study has been undertaken to develop a consumer-oriented feasibility method for a hybrid photovoltaic (PV)-battery energy storage (BES) system by analyzing a real life house in Istanbul, Turkey, as a case study. The hourly electricity demand of the house was estimated by carrying out a detailed survey of the life style and daily habits of the household. No algorithm of any kind was used for the estimation of the energy demand with the exception of relating the lighting requirement to the daylight hours and the heating and cooling requirements to the seasonal weather changes. The developed method estimates the annual demand with an overall error of 8.68%. The net grid dependency and the feasibility of the PV-BES system was calculated for different combinations of PV and BES system sizes. It was found that when the maximum available roof area is used for PV installation and when the BES system size is increased, it is possible to achieve almost zero net grid dependency, and it is estimated that houses that are in regions with more abundant solar radiation and/or with lower annual electricity consumption, can reach zero net grid dependency. However, the feasibility indicator, which is the payback period, turned out to be no less than 25 years in any of the scenarios. The reasons for the infeasibility are the high prices of PV and BES systems as well as the current restriction in the regulations in Turkey, which prevents BES system owners from participating in unlicensed energy generation schemes and selling excess electricity back to the grid. In order to overcome this situation, regulations should be updated to allow BES system owners to benefit from feed-in-tariff schemes, thereby increasing the popularity of both PV and BES usage in Turkey.


Author(s):  
Marco Astolfi ◽  
Giulio Guandalini ◽  
Marco Belloli ◽  
Adriano Hirn ◽  
Paolo Silva ◽  
...  

Abstract A key approach to large renewable power management is based on implementing storage technologies, including batteries, power-to-gas and compressed air energy storage (CAES). This work presents the preliminary design and performance assessment of an innovative type of CAES, based on underwater storage volumes (UW-CAES) and intended for installation in the proximity of deep water seas or lakes. The UW-CAES works with constant hydrostatic pressure storage and variable volumes. The proposed system is adiabatic, not using any fuel to increase the air temperature before expansion; a sufficient TIT is instead obtained through a thermal energy storage system which recovers the compression heat. The system includes (i) a set of turbomachines (modular multi-stage compressor, with partial intercooling; expansion turbine); (ii) a thermal energy storage (TES) system with different temperature levels designed to recover a large fraction of the compression heat, allowing the subsequent heating of air prior to the expansion phase; (iii) an underwater modular compressed air storage, conceived as a network of rigid but open tanks lying on the seabed and allowing a variable-volume and constant pressure operation. The compressor operates at variable loads, following an oscillating renewable power input, according to strategies oriented to improve the overall system dispatchability; the expander can be designed to work either at full load, thanks to the stability of the air flow rate and of the TIT guaranteed by the thermal storage, or at variable load. The paper first discusses in detail the sizing and off-design characterization of the overall system; it is then simulated a case study where the UW-CAES is coupled to a wind farm for peak shaving and dispatchability enhancement, evaluating the impact of a realistic power input on performances and plant flexibility. Although the assessment shall be considered preliminary, it is shown that round trip efficiency in the range of 75%–80% can be obtained depending on the compressor section configuration; making the UW-CAES a promising technology compared to electrochemical and pumped-hydro storage systems. The technology is also applied to perform peak-shaving of the electricity production from a wind park; annual simulations considering part load operation result in global round trip efficiency around 75% with a 10 to 15% reduction in the average unplanned energy injection in the electric grid. The investigated case study provides an example of the potential of this system in providing power output peak shaving when coupled with an intermittent and non-predictable energy source.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Marco Astolfi ◽  
Giulio Guandalini ◽  
Marco Belloli ◽  
Adriano Hirn ◽  
Paolo Silva ◽  
...  

Abstract A key approach to large renewable power management is based on implementing storage technologies, including batteries, power-to-gas, and compressed air energy storage (CAES). This work presents the preliminary design and performance assessment of an innovative type of CAES, based on underwater compressed air energy storage (UW-CAES) volumes and intended for installation in the proximity of deep-water seas or lakes. The UW-CAES works with constant hydrostatic pressure storage and variable volumes. The proposed system is adiabatic, not using any fuel to increase the air temperature before expansion; a sufficient turbine inlet temperature (TIT) is instead obtained through a thermal energy storage (TES) system which recovers the compression heat. The system includes (i) a set of turbomachines (modular multistage compressor, with partial intercooling; expansion turbine); (ii) a TES system with different temperature levels designed to recover a large fraction of the compression heat, allowing the subsequent heating of air prior to the expansion phase; (iii) an underwater modular compressed air storage, conceived as a network of rigid but open tanks lying on the seabed and allowing a variable-volume and constant pressure operation. The compressor operates at variable loads, following an oscillating renewable power input, according to strategies oriented to improve the overall system dispatchability; the expander can be designed to work either at full load, thanks to the stability of the air flowrate and of the TIT guaranteed by the thermal storage, or at variable load. This paper first discusses in detail the sizing and off-design characterization of the overall system; then it simulates a case study where the UW-CAES is coupled to a wind farm for peak shaving and dispatchability enhancement, evaluating the impact of a realistic power input on performances and plant flexibility. Although the assessment shall be considered preliminary, it is shown that round-trip efficiency (RTE) in the range of 75–80% can be obtained depending on the compressor section configuration, making the UW-CAES a promising technology compared to electrochemical and pumped-hydrostorage systems. The technology is also applied to perform peak-shaving of the electricity production from an off-shore wind farm; annual simulations, based on realistic wind data and considering part-load operation, result in global RTE around 75% with a 10–15% reduction in the average unplanned energy injection in the electric grid. The investigated case study provides an example of the potential of this system in providing power output peak shaving when coupled with an intermittent and nonpredictable energy source.


Inventions ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 11
Author(s):  
Gianmaria Giannini

Tidal power technology is at its mature stage and large deployments are soon expected. The characteristics of tidal energy and its advantage to be predictable make it an ideal type of resource to be coupled with energy storage facilities. Despite this, most energy storage facilities are expensive. The fact that water has a high specific heat capacity makes this a potential cost-effective medium to be used for storing large amounts of thermal energy for balancing renewable energy output. This paper is an investigation on the possible application of integrating hot water reservoirs for storing tidal energy during power output peaks for domestic use. The main objective of this study is to evaluate the major factors incident on the proposed solution and to provide considerations on which real remunerations the proposed idea could bring to communities or to single families. For this purpose, a simplified numerical analysis, concerning three different scenarios, was performed. These scenarios differ by type of buildings and type of thermal energy demand. The study mainly concerns remote communities. Findings indicated that the proposed idea is technically feasible and if applied in the context of residential compounds, this could be more attractive in economic terms.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1256
Author(s):  
Peter Lichtenwoehrer ◽  
Lore Abart-Heriszt ◽  
Florian Kretschmer ◽  
Franz Suppan ◽  
Gernot Stoeglehner ◽  
...  

In light of global warming and the energy turn, sector coupling has gained increasing interest in recent years, from both the scientific community and politics. In the following article it is hypothesized that efficient multifaceted sector coupling solutions depend on detailed spatial and temporal characteristics of energy demand and supply. Hence, spatiotemporal modelling is used as a methodology of integrated spatial and energy planning, in order to determine favourable sector coupling strategies at the local level. A case study evaluation was carried out for both central and decentral renewable energy sources. Considering the high temporal resolutions of energy demand and supply, the results revealed a feasible operation of a district heating network in the central areas of the case study municipalities. Additionally, building integrated solar energy technologies are capable of providing large amount of excess energy that could serve other demand sectors, such as the mobility sector, or could be used for Power-to-X solutions. It is suggested that sector coupling strategies require spatial considerations and high temporal comparisons, in order to be reasonably integrated in spatial and urban planning.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Karima H Alshoshan ◽  
Wedad B El-Osta ◽  
Yosof M Kahlifa ◽  
Ibrahim M Saleh

The residential load is one of the largest consumers of the electric energy in Libya that could be supplied by renewable energies. Renewable energy technologies and systems can be a good solution to build “Zero Energy Buildings”. A zero-energy house is proposed for Maqrun city. It is intended to use wind turbine with batteries as a storage system to supply electric energy demand for this house.The intended house average daily electric energy demand is estimated to be 35 kWh/day. Two WECS were selected to supply the energy demand each of size 6 kW. The energy produced by the selected wind energy conversion system (WECS) is about 23,894 kWh/yr and the expected capacity factor at the site is about 23%. Modeling of energy demand of the house and simulation of its performance was performed using excel sheets and HOMER software.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


2002 ◽  
Vol 52 (3) ◽  
pp. 327-345 ◽  
Author(s):  
T. Kravtseniouk

This paper shows the principal features of merger control in selected transition economies of Central and Eastern Europe (CEE), namely Hungary, Romania and Slovenia, by applying case study methodology. The presented findings are based on the analysis of Hungarian, Romanian and Slovenian competition law and merger rulings reached by the Competition Offices of these countries. A substantial part of the conclusions is drawn from a sample of 42 merger applications processed by the Office of Economic Competition of Hungary between 1994 and 2000. The results of empirical analysis demonstrate the considerable flexibility of merger control in the studied countries, its orientation towards the future of domestic markets and a close link with industrial policy. The paper also highlights the areas of interdependence of competition policy and transition and argues that merger control in the studied CEE countries may be regarded as currently adequate to the requirements imposed by transition.


2021 ◽  
Vol 13 (8) ◽  
pp. 4549
Author(s):  
Sara Salamone ◽  
Basilio Lenzo ◽  
Giovanni Lutzemberger ◽  
Francesco Bucchi ◽  
Luca Sani

In electric vehicles with multiple motors, the torque at each wheel can be controlled independently, offering significant opportunities for enhancing vehicle dynamics behaviour and system efficiency. This paper investigates energy efficient torque distribution strategies for improving the operational efficiency of electric vehicles with multiple motors. The proposed strategies are based on the minimisation of power losses, considering the powertrain efficiency characteristics, and are easily implementable in real-time. A longitudinal dynamics vehicle model is developed in Simulink/Simscape environment, including energy models for the electrical machines, the converter, and the energy storage system. The energy efficient torque distribution strategies are compared with simple distribution schemes under different standardised driving cycles. The effect of the different strategies on the powertrain elements, such as the electric machine and the energy storage system, are analysed. Simulation results show that the optimal torque distribution strategies provide a reduction in energy consumption of up to 5.5% for the case-study vehicle compared to simple distribution strategies, also benefiting the battery state of charge.


Sign in / Sign up

Export Citation Format

Share Document