scholarly journals Valorization of Rice Straw into Cellulose Microfibers for the Reinforcement of Thermoplastic Corn Starch Films

2021 ◽  
Vol 11 (18) ◽  
pp. 8433
Author(s):  
Pedro A. V. Freitas ◽  
Carla I. La Fuente Arias ◽  
Sergio Torres-Giner ◽  
Chelo González-Martínez ◽  
Amparo Chiralt

In the present study, agro-food waste derived rice straw (RS) was valorized into cellulose microfibers (CMFs) using a green process of combined ultrasound and heating treatments and were thereafter used to improve the physical properties of thermoplastic starch films (TPS). Mechanical defibrillation of the fibers gave rise to CMFs with cumulative frequencies of length and diameters below 200 and 5–15 µm, respectively. The resultant CMFs were successfully incorporated at, 1, 3, and 5 wt% into TPS by melt mixing and also starch was subjected to dry heating (DH) modification to yield TPS modified by dry heating (TPSDH). The resultant materials were finally shaped into films by thermo-compression and characterized. It was observed that both DH modification and fiber incorporation at 3 and 5 wt% loadings interfered with the starch gelatinization, leading to non-gelatinized starch granules in the biopolymer matrix. Thermo-compressed films prepared with both types of starches and reinforced with 3 wt% CMFs were more rigid (percentage increases of ~215% for TPS and ~207% for the TPSDH), more resistant to break (~100% for TPS and ~60% for TPSDH), but also less extensible (~53% for TPS and ~78% for TPSDH). The incorporation of CMFs into the TPS matrix at the highest contents also promoted a decrease in water vapor (~15%) and oxygen permeabilities (~30%). Finally, all the TPS composite films showed low changes in terms of optical properties and equilibrium moisture, being less soluble in water than the TPSDH films.

2020 ◽  
Author(s):  
Olivia López ◽  
María E. Villanueva ◽  
Guillermo J. Copello ◽  
Marcelo A Villar

Abstract Biodegradable films based on thermoplastic corn starch (TPS) and copper particles with antimicrobial capacity were developed. Copper nanoparticles (Cu) and silica coated copper microparticles (Si-Cu) in the range of 0.25 to 5 % were used. Composite films were obtained by melt-mixing and subsequent thermo-compression. Particles distribution within TPS matrix and the presence of some pores and cracks, induced by Si-Cu particles, was evaluated by SEM. The presence of both fillers gave to composite films a brown pigmentation and decreased their transparency; these effects were more pronounced at higher particles concentrations. Regarding mechanical properties, copper particles at 1 and 5 % acted as reinforcing agents increasing the maximum tensile strength but their presence lead to a decrease in elongation at break, affecting films ductility. Composites inhibited the growth of Gram+ and Gram- bacteria, demonstrating their antimicrobial capacity. Copper effectively migrated to a simulant of aqueous foods and naked particles concentration in the simulant medium resulted higher than the minimum inhibitory concentration for bacteria. The characteristics and properties of developed composite films make them an interesting material for food primary packaging, mainly for meat fresh products.


2020 ◽  
Author(s):  
Olivia López ◽  
María E. Villanueva ◽  
Guillermo J. Copello ◽  
Marcelo A Villar

Abstract Biodegradable films based on thermoplastic corn starch (TPS) and copper particles with antimicrobial capacity were developed. Copper nanoparticles (Cu) and silica coated copper microparticles (Si-Cu) in the range of 0.25 to 5 % were used. Composite films were obtained by melt-mixing and subsequent thermo-compression. Particles distribution within TPS matrix and the presence of some pores and cracks, induced by Si-Cu particles, was evaluated by SEM. The presence of both fillers gave to composite films a brown pigmentation and decreased their transparency; these effects were more pronounced at higher particles concentrations. Regarding mechanical properties, copper particles at 1 and 5 % acted as reinforcing agents increasing the maximum tensile strength but their presence lead to a decrease in elongation at break, affecting films ductility. Composites inhibited the growth of Gram+ and Gram- bacteria, demonstrating their antimicrobial capacity. Copper effectively migrated to a simulant of aqueous foods and naked particles concentration in the simulant medium resulted higher than the minimum inhibitory concentration for bacteria.The characteristics and properties of developed composite films make them an interesting material for food primary packaging, mainly for meat fresh products.


2020 ◽  
Author(s):  
Olivia López ◽  
María E. Villanueva ◽  
Guillermo J. Copello ◽  
Marcelo A Villar

Abstract Biodegradable films based on thermoplastic corn starch (TPS) and copper particles with antimicrobial capacity were developed. Copper nanoparticles (Cu) and silica coated copper microparticles (Si-Cu) in the range of 0.25 to 5 % were used. Composite films were obtained by melt-mixing and subsequent thermo-compression. Particles distribution within TPS matrix and the presence of some pores and cracks, induced by Si-Cu particles, was evaluated by SEM. The presence of both fillers gave composite films a brown pigmentation and decreased their transparency; these effects were more pronounced at higher particles concentrations. Regarding mechanical properties, copper particles at 1 and 5 % acted as reinforcing agents increasing the maximum tensile strength but their presence lead to a decrease in elongation at break, affecting films ductility. Composites inhibited the growth of Gram+ and Gram- bacteria, demonstrating their antimicrobial capacity. Copper effectively migrated to a simulant of aqueous foods and naked particles concentration in the simulant medium resulted higher than the minimum inhibitory concentration for bacteria. The characteristics and properties of developed composite films make them an interesting material for food primary packaging, mainly for meat fresh products.


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 985 ◽  
Author(s):  
Diana Paiva ◽  
André Pereira ◽  
Ana Pires ◽  
Jorge Martins ◽  
Luísa Carvalho ◽  
...  

Microparticles of corn starch and chitosan crosslinked with glutaraldehyde, produced by the solvent exchange technique, are studied as reinforcement fillers for thermoplastic corn starch plasticized with glycerol. The presence of 10% w/w chitosan in the microparticles is shown to be essential to guaranteeing effective crosslinking, as demonstrated by water solubility assays. Crosslinked chitosan forms an interpenetrating polymer network with starch chains, producing microparticles with a very low solubility. The thermal stability of the microparticles is in agreement with their polysaccharide composition. An XRD analysis showed that they have crystalline fraction of 32% with Va-type structure, and have no tendency to undergo retrogradation. The tensile strength, Young’s modulus, and toughness of thermoplastic starch increased by the incorporation of the crosslinked starch/chitosan microparticles by melt-mixing. Toughness increased 360% in relation to unfilled thermoplastic starch.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1084 ◽  
Author(s):  
Daniel Domene-López ◽  
Juan Carlos García-Quesada ◽  
Ignacio Martin-Gullon ◽  
Mercedes G. Montalbán

Thermoplastic starch (TPS) films are considered one of the most promising alternatives for replacing synthetic polymers in the packaging field due to the starch biodegradability, low cost, and abundant availability. However, starch granule composition, expressed in terms of amylose content and phosphate monoesters, and molecular weight of starch clearly affects some film properties. In this contribution, biodegradable TPS films made from potato, corn, wheat, and rice starch were prepared using the casting technique. The effect of the grain structure of each starch on microstructure, transparency, hydration properties, crystallinity, and mechanical properties of the films, was evaluated. Potato starch films were the most transparent and corn starch films the most opaque. All the films had homogeneous internal structures—highly amorphous and with no pores, both of which point to a good starch gelatinization process. The maximum tensile strength (4.48–8.14 MPa), elongation at break (35.41–100.34%), and Young’s modulus (116.42–294.98 MPa) of the TPS films were clearly influenced by the amylose content, molecular weight, and crystallinity of the film. In this respect, wheat and corn starch films, are the most resistant and least stretchable, while rice starch films are the most extensible but least resistant. These findings show that all the studied starches can be considered suitable for manufacturing resistant and flexible films with similar properties to those of synthetic low-density polyethylene (LDPE), by a simple and environmentally-friendly process.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1606
Author(s):  
Peng Yin ◽  
Jinglong Liu ◽  
Wen Zhou ◽  
Panxin Li

To improve the functional properties of starch-based films, chitin (CH) was prepared from shrimp shell powder and incorporated into corn starch (CS) matrix. Before blending, maleic anhydride (MA) was introduced as a cross-linker. Composite CS/MA-CH films were obtained by casting-evaporation approach. Mechanical property estimation showed that addition of 0–7 wt % MA-CH improved the tensile strength of starch films from 3.89 MPa to 9.32 MPa. Elongation at break of the films decreased with the addition of MA-CH, but the decrease was obviously reduced than previous studies. Morphology analysis revealed that MA-CH homogeneously dispersed in starch matrix and no cracks were found in the CS/MA-CH films. Incorporation of MA-CH decreased the water vapor permeability of starch films. The water uptake of the films was reduced when the dosage of MA-CH was below 5 wt %. Water contact angles of the starch films increased from 22° to 86° with 9 wt % MA-CH incorporation. Besides, the composite films showed better inhibition effect against Escherichia coli and Staphylococcus aureus than pure starch films.


2007 ◽  
Vol 1 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Ayan Chakraborty ◽  
Mohini Sain ◽  
Mark Kortschot ◽  
Sean Cutler

The successful dispersion of cellulose fibers of submicrometer diameter in polymers has been restricted to solution-cast films so far. In this work, the dispersion of microfibers in biopolymers was investigated by melt-mixing using conventional processing equipment. Thermoplastic starch and a blend of starch and polylactic acid (PLA) were used as matrix materials. A suspension of cellulose microfibers less than 1 μm in diameter was prepared in water. This microfiber suspension was poured into molten thermoplastic starch to obtain fiber loadings up to 2%. The composites were compression molded into thin films roughly 0.25 mm thick. there was a 10% increase in tensile strength and a 50% increase in stiffness with each percentage increase in microfiber loading in the starch polymer. Similar improvement in tensile properties was also noted for a polymer system prepared by blending starch and PLA. Laser confocal microscopy images were analyzed to quantify microfiber dispersion at different composite processing parameters. This was the first work where successful dispersion of cellulose fibers of submicrometer was achieved in a composite prepared solely by the melt-mixing process.


2021 ◽  
Vol 2080 (1) ◽  
pp. 012011
Author(s):  
Di Sheng Lai ◽  
Sinar Arzuria Adnan ◽  
Azlin Fazlina Osman ◽  
Ismail Ibrahim ◽  
Hazrul Haq

Abstract Thermoplastic starch (TPS) was studied extensively to replace conventional plastic in packaging application. In this study, granule corn starch was first plasticized with water and glycerol to form TPS films and two different fillers were incorporated with TPS to form hybrid biocomposite films (TPSB). Two different fillers: Microcrystalline cellulose (MC) and Nano bentonite (NB) fixed at 1: 4 ratios in various loading (1wt%-6wt%) were incorporated in TPS to study effect of hybrid fillers on the mechanical properties of TPSB films. The effect of different loading of MC/NB on TPSB films was investigated through the structural, morphological and mechanical testing. Fourier Transform Infrared Spectroscopy (FTIR) shows TPS matrix and hybrid fillers are highly compatible due to hydroxyl bonding and verified through the shifting of spectra band. Scanning Electron Microscope (SEM) showed even distribution of fillers in the matrix of TPS. The TPSB films exhibited significant improvement 40% in elongation at break compared to pure TPS films. In this study, 5wt% is best loading of the hybrid fillers to incorporated in TPSB films as it achieved the highest value of tensile strength (8.52MPa), Young’s Modulus (42.0 MPa) and elongation at break (116.3%). Generally, previous studies showed flexibility of TPS composite films reduced with incorporating filler, however in this study, the flexibility TPSB show significant improvement compared to previous studies and exhibit promising potential in dry food packaging application.


2021 ◽  
Vol 23 (1) ◽  
pp. 178
Author(s):  
Anna Martina Tedeschi ◽  
Fabrizio Di Caprio ◽  
Antonella Piozzi ◽  
Francesca Pagnanelli ◽  
Iolanda Francolini

This study combines the use of corn starch and Tetradesmus obliquus microalgae for the production of antioxidant starch films as flexible packaging material. Starch was plasticized with glycerol and blended with 1 w% polyallylamine chosen as an agent to modify the film physical properties. The addition of polyallylamine improved film water stability and water vapor transmission rate as well as mechanical stiffness and tenacity. The dried Tetradesmus obliquus microalgae, which showed an EC50 value of 2.8 mg/mg DPPH (2.2-Diphenyl-1-picrylhydrazyl radical), was then used as antioxidant filler. The addition of microalgae provided the films with good antioxidant activity, which increased with microalgae content increasing. To our knowledge, this is the first study reporting the development of sustainable bioactive packaging films composed of almost 100% starch, and follows the European union’s goals on plastics strategy concerning the promotion of bio-based, compostable plastics and the setting up of approaches to prevent food waste with a simple plastic packaging.


2021 ◽  
Vol 2080 (1) ◽  
pp. 012031
Author(s):  
Ismail Ibrahim ◽  
Azlin Fazlina Osman ◽  
Sinar Arzuria Adnan ◽  
Lai Di Sheng ◽  
Nazrul Haq

Abstract Development of bio-based polymers can reduce human dependence on fossil fuel and move to a sustainable material resource. In this work, thermoplastics starch (TPS) films were produced by plasticization process, in which the crystalline structure of the starch granules was destroyed and reformed by water and glycerine through mechanical stirring and heating process. Hectorite was employed as filler to reinforce the TPS films. The hectorite was subjected to ultrasonication process for reducing the size and aggregation of particles. The ultrasonicated hectorite was added into the TPS solution to produce the TPS/hectorite bio-composite by film casting method. The TPS films with hectorite loading in the range of 1% to 5% were prepared. The morphology, tear strength and soil biodegradability of the TPS/hectorite bio-composite films were studied by altering the loading of hectorite incorporated into the TPS films. Results showed that the TPS/hectorite bio-composite films have higher tear strength compared to the pure TPS films. The tear strength of the bio-composite films slightly increased with hectorite content 1% and 2%. However, as the filler loading increased to 3%, there was a drastic increase of the tear strength. The maximum tear strength value was achieved by the TPS film when 4% hectorite filler was employed. The TPS/4% hectorite (ultrasonicated) has the lowest rate of soil biodegradation due to its lower moisture uptake and greatest interface interaction between starch and hectorite, inhibiting diffusion of bacteria into the films.


Sign in / Sign up

Export Citation Format

Share Document