scholarly journals Preprocessing for Unintended Conducted Emissions Classification with ResNet

2021 ◽  
Vol 11 (19) ◽  
pp. 8808
Author(s):  
Gregory Sheets ◽  
Philip Bingham ◽  
Mark B. Adams ◽  
David Bolme ◽  
Scott L. Stewart

Characterization of Unintended Conducted Emissions (UCE) from electronic devices is important when diagnosing electromagnetic interference, performing nonintrusive load monitoring (NILM) of power systems, and monitoring electronic device health, among other applications. Prior work has demonstrated that UCE analysis can serve as a diagnostic tool for energy efficiency investigations and detailed load analysis. While explaining the feature selection of deep networks with certainty is often not fully comprehensive, or in other applications, quite lacking, additional tools/methods for further corroboration and confirmation can help further the understanding of the researcher. This is true especially in the subject application of the study in this paper. Often the focus of such efforts is the selected features themselves, and there is not as much understanding gained about the noise in the collected data. If selected feature and noise characteristics are known, it can be used to further shape the design of the deep network or associated preprocessing. This is additionally difficult when the available data are limited, as in the case which the authors investigated in this study. Here, the authors present a novel work (which is a proposed complementary portion of the overall solution to the deep network classification explainability problem for this application) by applying a systematic progression of preprocessing and a deep neural network (ResNet architecture) to classify UCE data obtained via current transformers. By using a methodical application of preprocessing techniques prior to a deep classifier, hypotheses can be produced concerning what features the deep network deems important relative to what it perceives as noise. For instance, it is hypothesized in this particular study as a result of execution of the proposed method and periodic inspection of the classifier output that the UCE spectral features are relatively close to each other or to the interferers, as systematically reducing the beta parameter of the Kaiser window produced progressively better classification performance, but only to a point, as going below the Beta of eight produced decreased classifier performance, as well as the hypothesis that further spectral feature resolution was not as important to the classifier as rejection of the leakage from a spectrally distant interference. This can be very important in unpredictable low-FNR applications, where knowing the difference between features and noise is difficult. As a side-benefit, much was learned regarding the best preprocessing to use with the selected deep network for the UCE collected from these low power consumer devices obtained via current transformers. Baseline rectangular windowed FFT preprocessing provided a 62% classification increase versus using raw samples. After performing a more optimal preprocessing, more than 90% classification accuracy was achieved across 18 low-power consumer devices for scenarios in which the in-band features-to-noise ratio (FNR) was very poor.

2005 ◽  
Vol 15 (02) ◽  
pp. 459-476
Author(s):  
C. PATRICK YUE ◽  
JAEJIN PARK ◽  
RUIFENG SUN ◽  
L. RICK CARLEY ◽  
FRANK O'MAHONY

This paper presents the low-power circuit techniques suitable for high-speed digital parallel interfaces each operating at over 10 Gbps. One potential application for such high-performance I/Os is the interface between the channel IC and the magnetic read head in future compact hard disk systems. First, a crosstalk cancellation technique using a novel data encoding scheme is introduced to suppress electromagnetic interference (EMI) generated by the adjacent parallel I/Os . This technique is implemented utilizing a novel 8-4-PAM signaling with a data look-ahead algorithm. The key circuit components in the high-speed interface transceiver including the receive sampler, the phase interpolator, and the transmitter output driver are described in detail. Designed in a 0.13-μm digital CMOS process, the transceiver consumes 310 mW per 10-Gps channel from a I-V supply based on simulation results. Next, a 20-Gbps continuous-time adaptive passive equalizer utilizing on-chip lumped RLC components is described. Passive equalizers offer the advantages of higher bandwidth and lower power consumption compared with conventional designs using active filter. A low-power, continuous-time servo loop is designed to automatically adjust the equalizer frequency response for the optimal gain compensation. The equalizer not only adapts to different channel characteristics, but also accommodates temperature and process variations. Implemented in a 0.25-μm, 1P6M BiCMOS process, the equalizer can compensate up to 20 dB of loss at 10 GHz while only consumes 32 mW from a 2.5-V supply.


Author(s):  
Jie Tian ◽  
Zonghan Sun ◽  
Pengfei Chai ◽  
Hua Ouyang

Abstract Experimental and numerical studies on the aerodynamic noise characteristics of a variable-speed axial fan commonly used for electronic device heat dissipation were conducted. First, the far-field noise spectrum of the fan was measured using a microphone array on the contour plane of the fan axis. The spectral analysis indicated that the discrete single-tone noise energy ratio was high, which indicates that it was the dominant aerodynamic noise. Afterwards, the double-uniform sampling point mode correction technique, which is based on the circumferential acoustic mode measurement method, was used to obtain the modal distribution on the inlet and outlet sides of the cooling fan. The influence of inlet unevenness on the cooling fan was identified. The traditional Tyler-Sofrin rotor-stator interaction formula was modified to account for the non-axisymmetric shape of the fan inlet bellmouth. The validity of the modified formula was verified by measuring the circumferential acoustic modes of three cooling fans with different rotor and strut counts. Furthermore, a CFD numerical study was conducted using Fluent to understand the influence of uneven inlet flow. The results showed that uneven inlet flow significantly affects the size and distribution of unsteady pulses on the rotor blades, which cause regular, periodic changes as the rotor blades rotate. Interactions between rotor blades and inlet unevenness were observed via the POD method as well. The discussion of the circumferential modes from aerodynamic noise of an axial flow cooling fan can act as a reference for further cooling fan noise reduction measures.


2019 ◽  
Vol 37 (4) ◽  
pp. 410-417
Author(s):  
Bhim Singh ◽  
Somnath Pal ◽  
Ashish Shrivastava
Keyword(s):  

2014 ◽  
Vol 1052 ◽  
pp. 447-453
Author(s):  
Ya Juan Yang ◽  
Zhi Yong Wang ◽  
Xiao Ping Yang ◽  
Yong Xin Shao

The technology of fluorescent optical fiber temperature measurement has been used in many fields to accurately measure the variations of temperature, especially in some extreme environment, such as strong electromagnetic interference under, high voltage conditions. Wavelet analysis is the most frequent method used for signal processing in this technology. This method has excellent local characteristics and its precise of processing is high, whereas its result relies heavily on the selection of the wavelet basis, and has certain limitation. In this paper, a novel approach for fluorescent signal processing based on Hilbert-Huang transform is presented. A given signal is decomposed into a collection of intrinsic mode functions (IMF) by empirical mode decomposition, then Hilbert spectral analysis is performed for each of the IMF. According to the difference of signal and noise characteristics, HHT can generate adaptive modal functions and remove the noise from signal effectively, so that the signal to noise ratio can be improved. The result of experiment shows that HHT features convenient usage, fast processing and high resolution in time and frequency domains.


2016 ◽  
Vol 14 ◽  
pp. 129-137
Author(s):  
Jens Schüür ◽  
Lukas Oppermann ◽  
Achim Enders ◽  
Rafael R. Nunes ◽  
Carl-Henrik Oertel

Abstract. The ever increasing use of PEDs (passenger or portable electronic devices) has put pressure on the aircraft industry as well as operators and administrations to reevaluate established restrictions in PED-use on airplanes in the last years. Any electronic device could cause electromagnetic interference to the electronics of the airplane, especially interference at receiving antennas of sensitive wireless navigation and communication (NAV/COM) systems. This paper presents a measurement campaign in an Airbus A320. 69 test passengers were asked to actively use a combination of about 150 electronic devices including many attached cables, preferentially with a high data load on their buses, to provoke maximal emissions. These emissions were analysed within the cabin as well as at the inputs of aircraft receiving antennas outside of the fuselage. The emissions of the electronic devices as well as the background noise are time-variant, so just comparing only one reference and one transmission measurement is not sufficient. Repeated measurements of both cases lead to a more reliable first analysis. Additional measurements of the absolute received power at the antennas of the airplane allow a good estimation of the real interference potential to aircraft NAV/COM systems. Although there were many measured emissions within the cabin, there were no disturbance signals detectable at the aircraft antennas.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Jie Tian ◽  
Zonghan Sun ◽  
Pengfei Chai ◽  
Hua Ouyang

Abstract Experimental and numerical studies on the aerodynamic noise characteristics of a variable-speed axial fan commonly used for electronic device heat dissipation were conducted. First, the far-field noise spectrum of the fan was measured using a microphone on the contour plane of the fan axis. The spectral analysis indicated that the discrete single-tone noise energy ratio was high, which indicates that it was the dominant aerodynamic noise. Afterward, the double-uniform sampling point mode correction technique, which is based on the circumferential acoustic mode measurement method, was used to obtain the modal distribution on the inlet and outlet sides of the cooling fan. The influence of inlet unevenness on the cooling fan was identified. The traditional Tyler–Sofrin rotor–stator interaction formula was modified to account for the nonaxisymmetric shape of the fan inlet bellmouth. The validity of the modified formula was verified by measuring the circumferential acoustic modes of three cooling fans with different rotor and strut counts. Furthermore, a computational fluid dynamics (CFD) numerical study was conducted using Fluent to understand the influence of uneven inlet flow. The results showed that uneven inlet flow significantly affects the size and distribution of unsteady pulses on the rotor blades, which cause regular, periodic changes as the rotor blades rotate. Interactions between rotor blades and inlet unevenness were observed via the proper orthogonal decomposition (POD) method as well. The discussion of the circumferential modes from aerodynamic noise of an axial flow cooling fan can act as a reference for further cooling fan noise reduction measures.


2020 ◽  
Vol 8 (40) ◽  
pp. 13990-13998 ◽  
Author(s):  
Sunghwan Hong ◽  
Seong Soo Yoo ◽  
Jun Young Lee ◽  
Pil J. Yoo

With growing concerns over electronic device malfunction and the resulting information loss caused by electromagnetic interference (EMI), extensive studies have been performed in developing EMI shielding techniques.


Sign in / Sign up

Export Citation Format

Share Document