scholarly journals Modeling of Impact Energy Release of PTFE/Al Reactive Material

2021 ◽  
Vol 11 (19) ◽  
pp. 8910
Author(s):  
Xuan Zou ◽  
Jingyuan Zhou ◽  
Wenhui Tang ◽  
Yiting Wu ◽  
Pengwan Chen ◽  
...  

Many scholars have used experimental research methods to conduct extensive research on the impact energy release behavior of Polytetrafluoroethylene(PTFE)/Al reactive materials. However, in numerical simulation, PTFE/Al still lacks the calculation parameters of impact energy release behavior. In order to obtain the simulation parameters of PTFE/Al impact ignition, the Hill mixture law was used to calculate the material parameters of PTFE/Al (mass ratio 73.5/26.5), and according to the Hugoniot curve of PTFE/Al and the γ state equation, the JWL equation of state of a PTFE/Al unreacted substance and reaction product was fitted with a genetic algorithm. According to the PTFE/Al impact energy release experiment, the parameters of the PTFE/Al chemical kinetic equation were determined, and the parameters of the trinomial reaction rate equation were fitted. The obtained parameters were used in the simulation calculation in LS-dyna to predict the damage of the aluminum target plate under the impact of the PTFE/Al reactive fragments.

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 499 ◽  
Author(s):  
Kerong Ren ◽  
Rong Chen ◽  
Yuliang Lin ◽  
Shun Li ◽  
Xianfeng Zhang ◽  
...  

Reactive metals (RMs) are a new class of material that can withstand mechanical loads and chemically react to release large amounts of heat under strong impact loading. They are gradually becoming widely used in defense and military fields, including for high-efficiency warheads and reactive armor. For the numerical simulation method considering the combined mechanical-thermo-chemical process for the impact energy release behavior of the RMs, the Al/Ni-based RMs were investigated in this work by combining experiments, theoretical calculations and a numerical simulation. Three kinds of Al/Ni-based RMs (Al-Ni, Al-Ni-CuO and Al-Ni-MoO3), were prepared using the hot-pressing forming process. Firstly, the compressive behavior and the parameters of the Johnson-Cook constitutive model were obtained using a mechanical testing machine and split Hopkinson pressure bars (SHPB). Secondly, the parameters of the equation of state (EOS) under the medium and low pressure conditions of the Al/Ni-based RMs, which were was seen as porous mixtures with high theoretical material density percentages (TMD%), were calculated based on the cold-energy superposition theory and the Wu-Jing method. Third, the impact energy release behaviors of the three RMs were studied with direct ballistic tests. The shock temperatures at different impact velocities were calculated based on the existing shock-induced chemical reaction thermo-chemical model while considering the chemical reaction efficiency, the relationship between the shock temperature and the extent of the chemical reaction was established, and the parameters of the relevant chemical kinetic equations were fitted. Finally, the user’s subroutines defining the material model were implemented to update the stresses in the solids elements in LS-DYNA. The model was based on the Johnson-Cook constitutive model with consideration of the mechanical-thermo-chemical coupling effect, which was verified by the experimental results. The results show that the constitutive model developed in this work can describe the impact energy release behavior of the Al/Ni-based RMs.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Baoyue Guo ◽  
Kerong Ren ◽  
Zhibin Li ◽  
Rong Chen

Reactive material (RM) is a new type of energetic material, which is widely used in the military technology fields such as fragmentation warheads and shaped charge warheads. Violent chemical reactions take place in the impact process of reactive materials, and how to realize the macro numerical simulation of shock-induced energy release behavior of reactive materials is one of the most urgent problems to be solved for its future military applications. In this study, a numerical simulation approach and procedure is proposed, which can simulate the shock-induced energy release behavior of reactive materials on a macro scale. Firstly, program implementation of the mechanical-thermal-chemical coupled effect model for RM is realized in the second-development interface of LS-DYNA software. Then, the adaptive simulated annealing algorithm is used to fit the chemical reaction kinetic parameters of RM using the direct ballistics test data. Finally, the simulation calculation of the fragment penetrating upon steel plate is carried out to expand the applicability of the numerical simulation approach proposed in this study. The results show that the numerical simulation approach proposed in this study can reproduce the results of the direct ballistics test more accurately, which assumes practical significance for the engineering application of reactive materials in the military field in the future.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3940 ◽  
Author(s):  
Xianwen Ran ◽  
Liangliang Ding ◽  
Jingyuan Zhou ◽  
Wenhui Tang

Currently, PTFE/Al is widely used in the reactive fragmentation warhead. However, for the same explosive yield, the reactive fragments usually have a smaller damage-radius than the inert fragments because PTFE/Al has a poor penetration ability and needs an impact-speed up to 1000 m/s to stimulate its chemical reaction. To enhance the damage power of reactive fragments, six kinds of reactive materials (PTFE/Al, PTFE/B, PTFE/Si, PTFE/Al/B, PTFE/Al/Si, and PTFE/Al/CuO) based on PTFE were designed and studied. Through the drop weight system and the self-designed energy release test device, qualitative and quantitative analysis of the energy release ability of six kinds of reactive materials were carried out. The qualitative analysis results indicate that the reactions of PTFE/B and PTFE/Si are weak under the impact of drop hammer with only a very weak fire light produced, while the reactions of PTFE/Al, PTFE/Al/B, PTFE/Al/Si, and PTFE/Al/CuO are relatively intense, and the reaction of PTFE/Al/Si is the most intense. Through the self-designed energy release test device, the energy release ability of the reactive material was quantitatively compared and analyzed. The results show that the energy release ability of the four formulations were as follows: PTFE/Al/Si > PTFE/Al/CuO > PTFE/Al/B > PTFE/Al. Therefore, it can be concluded that the PTFE/Al/Si formulation is a new reactive material with strong energy release ability, which can be a new choice for reactive fragment.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3317
Author(s):  
Li ◽  
Du

The energy released by the active metal phase in fine-grained Fe/Al energetic materials enables the replacement of conventional materials in new types of weapons. This paper describes an experiment designed to study the energy-release characteristics of fine-grained Fe/Al energetic jets under impact loading. By means of dynamic mechanical properties analysis, the physical and chemical properties of Fe/Al energetic materials with specific content are studied, and the preparation process is determined. The energy-release properties of fine-grained Fe/Al jets subject to different impact conditions are studied based on experimental data, and energy-release differences are discussed. The results show that for fine-grained Fe/Al energetic materials to remain active and exhibit high strength, the highest sintering temperature is 550 °C. With increasing impact energy, the energy release of fine-grained Fe/Al energetic jets increases. At an impact-energy threshold of 121.1 J/mm2, the chemical reaction of the fine-grained Fe/Al energetic jets is saturated. The experimental data and microscopic analysis show that when the impact energy reaches the threshold, the energy efficiency ratio of Fe/Al energetic jets can reach 95.3%.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Fuhai Li ◽  
Hantao Liu ◽  
Yanwen Xiao

Compared with traditional jets, energetic jets have more efficient damage effects. To study the reaction characteristics of polytetrafluoroethylene- (PTFE-) based energetic jets under impact loading, the static mechanical properties of Al/PTFE/W composite energetic materials are studied by using a universal testing machine at a strain rate of 0.01 s−1, and the dynamic mechanical properties are tested on a slip Hopkinson pressure bar (SHPB) system at a strain rate of 1000∼5500 s−1. A dynamic energy acquisition system is established to quantify the energy generated by the response of the Al/PTFE/W energetic jets to impact targets. The effects of the material proportion and impact energy on the mechanical and energy release properties of the Al/PTFE/W energetic jets are analyzed. The results show that the Al/PTFE/W composite has an obvious strain rate effect. As the W content in the composite increases, the yield strength and compressive strength of the material increase gradually, but the strain at break decreases. When the W content is 45%, the peak pressure, total release energy, pressure platform duration, and total pressure duration of the Al/PTFE/W energetic jets are the highest. As the impact energy increases, the pressure peak and energy release values of the energetic jets increase. At an impact energy threshold of 106.1 MJ/m2, the chemical reaction of the Al/PTFE/W (45%) energetic jets is saturated. The results provide a theoretical and experimental basis for the application of energetic jets.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3464
Author(s):  
Xuan Zou ◽  
Jingyuan Zhou ◽  
Xianwen Ran ◽  
Yiting Wu ◽  
Ping Liu ◽  
...  

Recent studies have shown that the energy release capacity of Polytetrafluoroethylene (PTFE)/Al with Si, and CuO, respectively, is higher than that of PTFE/Al. PTFE/Al/Si/CuO reactive materials with four proportions of PTFE/Si were designed by the molding–sintering process to study the influence of different PTFE/Si mass ratios on energy release. A drop hammer was selected for igniting the specimens, and the high-speed camera and spectrometer systems were used to record the energy release process and the flame spectrum, respectively. The ignition height of the reactive material was obtained by fitting the relationship between the flame duration and the drop height. It was found that the ignition height of PTFE/Al/Si/CuO containing 20% PTFE/Si is 48.27 cm, which is the lowest compared to the ignition height of other Si/PTFE ratios of PTFE/Al/Si/CuO; the flame temperature was calculated from the flame spectrum. It was found that flame temperature changes little for the same reactive material at different drop heights. Compared with the flame temperature of PTFE/Al/Si/CuO with four mass ratios, it was found that the flame temperature of PTFE/Al/Si/CuO with 20% PTFE/Si is the highest, which is 2589 K. The results show that PTFE/Al/Si/CuO containing 20% PTFE/Si is easier to be ignited and has a stronger temperature destruction effect.


Sign in / Sign up

Export Citation Format

Share Document