scholarly journals Dynamic Modeling and Control of a Simulated Carbon Capture Process for Sustainable Power-to-X

2021 ◽  
Vol 11 (20) ◽  
pp. 9574
Author(s):  
Mahmoud Mostafa ◽  
Christopher Varela ◽  
Meik B. Franke ◽  
Edwin Zondervan

The goal of this study is to develop a dynamic model for a Carbon Capture (CC) process that can be integrated with a water electrolysis facility. The possibility of operating the post-combustion CC plant dynamically is investigated. The final model successfully tracks the parallel hydrogen production, providing the stoichiometric required CO2 stream for the subsequent methanol reactor. A dynamic model is used to configure controllers and to test the unit performance and stream conditions for various set points. Through the transient operation, the required feed gas is provided while optimizing the solvent and energy requirements. It is found that the slowest acting stage is the reboiler with a time constant of 3.8 h. Other process variables stabilize much quicker, requiring only a few minutes to reach steady-state conditions. The hydrogen-tracking scenario shows that the carbon capture plant can successfully operate under varying conditions with a maximum CO2 output increase of 7% of the minimum flowrate in the representative 24 h simulation time. The output CO2 stream is maintained at the desired >98% purity, 25 °C temperature, and 1.85 bar pressure, which allows to successfully perform hydrogen tracking operations.

Drones ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 71
Author(s):  
Luz M. Sanchez-Rivera ◽  
Rogelio Lozano ◽  
Alfredo Arias-Montano

Hybrid Unmanned Aerial Vehicles (H-UAVs) are currently a very interesting field of research in the modern scientific community due to their ability to perform Vertical Take-Off and Landing (VTOL) and Conventional Take-Off and Landing (CTOL). This paper focuses on the Dual Tilt-wing UAV, a vehicle capable of performing both flight modes (VTOL and CTOL). The UAV complete dynamic model is obtained using the Newton–Euler formulation, which includes aerodynamic effects, as the drag and lift forces of the wings, which are a function of airstream generated by the rotors, the cruise speed, tilt-wing angle and angle of attack. The airstream velocity generated by the rotors is studied in a test bench. The projected area on the UAV wing that is affected by the airstream generated by the rotors is specified and 3D aerodynamic analysis is performed for this region. In addition, aerodynamic coefficients of the UAV in VTOL mode are calculated by using Computational Fluid Dynamics method (CFD) and are embedded into the nonlinear dynamic model. To validate the complete dynamic model, PD controllers are adopted for altitude and attitude control of the vehicle in VTOL mode, the controllers are simulated and implemented in the vehicle for indoor and outdoor flight experiments.


Robotica ◽  
1998 ◽  
Vol 16 (6) ◽  
pp. 607-613 ◽  
Author(s):  
J. H. Chung ◽  
S. A. Velinsky

This paper concerns the modeling and control of a mobile manipulator which consists of a robotic arm mounted upon a mobile platform. The equations of motion are derived using the Lagrange-d'Alembert formulation for the nonholonomic model of the mobile manipulator. The dynamic model which considers slip of the platform's tires is developed using the Newton-Euler method and incorporates Dugoff's tire friction model. Then, the tracking problem is investigated by using a well known nonlinear control method for the nonholonomic model. The adverse effect of the wheel slip on the tracking of commanded motion is discussed in the simulation. For the dynamic model, a variable structure control approach is employed to minimize the harmful effect of the wheel slip on the tracking performance. The simulation results demonstrate the effectiveness of the proposed control algorithm.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3608 ◽  
Author(s):  
Qianqian Wu ◽  
Ning Cui ◽  
Sifang Zhao ◽  
Hongbo Zhang ◽  
Bilong Liu

The environment in space provides favorable conditions for space missions. However, low frequency vibration poses a great challenge to high sensitivity equipment, resulting in performance degradation of sensitive systems. Due to the ever-increasing requirements to protect sensitive payloads, there is a pressing need for micro-vibration suppression. This paper deals with the modeling and control of a maglev vibration isolation system. A high-precision nonlinear dynamic model with six degrees of freedom was derived, which contains the mathematical model of Lorentz actuators and umbilical cables. Regarding the system performance, a double closed-loop control strategy was proposed, and a sliding mode control algorithm was adopted to improve the vibration isolation performance. A simulation program of the system was developed in a MATLAB environment. A vibration isolation performance in the frequency range of 0.01–100 Hz and a tracking performance below 0.01 Hz were obtained. In order to verify the nonlinear dynamic model and the isolation performance, a principle prototype of the maglev isolation system equipped with accelerometers and position sensors was developed for the experiments. By comparing the simulation results and the experiment results, the nonlinear dynamic model of the maglev vibration isolation system was verified and the control strategy of the system was proved to be highly effective.


2016 ◽  
Vol 49 (7) ◽  
pp. 633-638 ◽  
Author(s):  
Benjamin P. Omell ◽  
Jinliang Ma ◽  
Priyadarshi Mahapatra ◽  
Mingzhao Yu ◽  
Andrew Lee ◽  
...  

2021 ◽  
pp. 1-23
Author(s):  
Stefan Atay ◽  
Matthew Bryant ◽  
Gregory D. Buckner

Abstract This paper presents the dynamic modeling and control of a bi-modal, multirotor vehicle that is capable of omnidirectional terrestrial rolling and multirotor flight. It focuses on the theoretical development of a terrestrial dynamic model and control systems, with experimental validation. The vehicle under consideration may roll along the ground to conserve power and extend endurance but may also fly to provide high mobility and maneuverability when necessary. The vehicle employs a three-axis gimbal system that decouples the rotor orientation from the vehicle's terrestrial rolling motion. A dynamic model of the vehicle's terrestrial motion is derived from first principles. The dynamic model becomes the basis for a nonlinear trajectory tracking control system suited to the architecture of the vehicle. The vehicle is over-actuated while rolling, and the additional degrees of actuation can be used to accomplish auxiliary objectives, such as power optimization and gimbal lock avoidance. Experiments with a hardware vehicle demonstrate the efficacy of the trajectory tracking control system.


Author(s):  
Parham Pournazari ◽  
Pradeepkumar Ashok ◽  
Eric van Oort

This paper presents a robust control algorithm for automatic hoisting of a drill string in oil and gas drilling operations. We demonstrate an iterative scheme for trajectory design and present a lumped dynamic model of the hoisting system. The trajectory is used along with the dynamic model to design a hybrid sliding mode and gain scheduled PI controller to deal with the frictional nonlinearities of the system. The simulation results demonstrate the feasibility of this approach in optimally performing the pipe hoisting task.


Author(s):  
Andre L. Kirsten ◽  
Jacson Hansen ◽  
Paulo C. V. da Luz ◽  
Cassiano Rech ◽  
Ricardo N. do Prado ◽  
...  

Author(s):  
Anthony Garcia ◽  
William Singhose ◽  
Aldo Ferri

When cranes lift payloads off the ground, the payload may slide sideways or swing unexpectedly. This motion occurs when the payload is not directly beneath the overhead suspension point of the hoist cable. Given that cable suspension points can be hundreds of feet above the payload, it is difficult for crane operators to know if the hoist cable is vertical before lifting the payload off the ground. If an off-center lift creates substantial horizontal motion, then it can create significant hazards for the operators, the payload, and the surrounding environment. This paper develops a three-dimensional dynamic model that predicts motions of off-centered lifts.


2014 ◽  
Vol 693 ◽  
pp. 110-116
Author(s):  
Lukas Smolarik ◽  
Dušan Mudrončík ◽  
Milan Strbo

Surge is a type of instability, that dramatically affects the operation and life of the turbocharger. There were analyzed the options for the control of surge of which were control designed for surge avoidance (method of minimizing the flow through the control valve). This algorithm is based on the logic of closure control valve at a constant speed regardless of the error. Besides of control were designed surge and control curves. To verify the solution was modeled and implemented nonlinear parametric model with downstream with control valve (Fink model) in Matlab. The simulation models are needed for physical systems, and develop good management strategy. Derivation of the compressor characteristic is presented. Dynamic model also includes two characteristics of valves describing mass flow.


Sign in / Sign up

Export Citation Format

Share Document