scholarly journals A Short S-Equol Exposure Has a Long-Term Inhibitory Effect on Adipogenesis in Mouse 3T3-L1 Cells

2021 ◽  
Vol 11 (20) ◽  
pp. 9657
Author(s):  
Gilberto Mandujano-Lázaro ◽  
Carlos Galaviz-Hernández ◽  
César A. Reyes-López ◽  
Julio C. Almanza-Pérez ◽  
Abraham Giacoman-Martínez ◽  
...  

In the search for new drugs against obesity, the chronic disease that threatens human health worldwide, several works have focused on the study of estrogen homologs because of the role of estrogen receptors (ERs) in adipocyte growth. The isoflavone equol, an ERβ agonist, has shown beneficial metabolic effects in in vivo and in vitro assays; however, additional studies are required to better characterize its potential for body weight control. Here, we showed that the treatment of 3T3-L1 cells with 10 μM of S-equol for the first three days of the adipocyte differentiation protocol was able to prevent cells becoming semi-rounded and having a lipid droplet formation until the seventh day of culture; moreover, lipid accumulation was reduced by about 50%. Congruently, S-equol induced a reduction in mRNA expression of the adipogenic markers C/EBPα and PPARγ, and adipokines secretion, mainly Adiponectin, Leptin, Resistin, and MCP-1, while the release of PAI-1 was augmented. Moreover, it also reduced the expression of ERα and attenuated the subexpression of ERβ associated with adipogenesis. Altogether, our data suggested that S-equol binding to ERβ affects the transcriptional program that regulates adipogenesis and alters adipocyte functions. Future efforts will focus on studying the impact of S-equol on ER signaling pathways.

Author(s):  
Pingping Jia ◽  
Yi Zhang ◽  
Jian Xu ◽  
Mei Zhu ◽  
Shize Peng ◽  
...  

Abstract Background Resistance to anti-tuberculosis (TB) drug is a major issue in TB control, and demands the discovery of new drugs targeting virulence factor ESX-1. Methods We first established a high-throughput screen (HTS) assay for the discovery of ESX-1 secretion inhibitors. The positive hits were then evaluated for the potency of diminishing the survival of virulent mycobacterium and reducing bacterial virulence. We further investigated the probability of inducing drug-resistance and the underlying mechanism using M-PFC. Results A robust HTS assay was developed to identify small molecules that inhibit ESX-1 secretion without impairing bacterial growth in vitro. A hit named IMB-BZ specifically inhibits the secretion of CFP-10 and reduces virulence in an ESX-1-dependent manner, therefore resulting in significant reduction in intracellular and in vivo survival of mycobacteria. Blocking the CFP-10-EccCb1 interaction directly or indirectly underlies the inhibitory effect of IMB-BZ on the secretion of CFP-10. Importantly, our finding shows that the ESX-1 inhibitors pose low risk of drug resistance development by mycobacteria in vitro as compared with traditional anti-TB drug, and exhibit high potency against chronic mycobacterial infection. Conclusion Targeting ESX-1 may lead to the development of novel therapeutics for tuberculosis. IMB-BZ holds the potential for future development into a new anti-TB drug.


2015 ◽  
Vol 35 (21) ◽  
pp. 3768-3784 ◽  
Author(s):  
Said Movahedi Naini ◽  
Alice M. Sheridan ◽  
Thomas Force ◽  
Jagesh V. Shah ◽  
Joseph V. Bonventre

The G2-to-M transition (or prophase) checkpoint of the cell cycle is a critical regulator of mitotic entry. SIRT2, a tumor suppressor gene, contributes to the control of this checkpoint by blocking mitotic entry under cellular stress. However, the mechanism underlying both SIRT2 activation and regulation of the G2-to-M transition remains largely unknown. Here, we report the formation of a multiprotein complex at the G2-to-M transitionin vitroandin vivo. Group IVA cytosolic phospholipase A2(cPLA2α) acts as a bridge in this complex to promote binding of SIRT2 to cyclin A-Cdk2. Cyclin A-Cdk2 then phosphorylates SIRT2 at Ser331. This phosphorylation reduces SIRT2 catalytic activity and its binding affinity to centrosomes and mitotic spindles, promoting G2-to-M transition. We show that the inhibitory effect of cPLA2α on SIRT2 activity impacts various cellular processes, including cellular levels of histone H4 acetylated at K16 (Ac-H4K16) and Ac-α-tubulin. This regulatory effect of cPLA2α on SIRT2 defines a novel function of cPLA2α independent of its phospholipase activity and may have implications for the impact of SIRT2-related effects on tumorigenesis and age-related diseases.


2021 ◽  
Author(s):  
Rui Yang ◽  
Wenzhe Wang ◽  
Meichen Dong ◽  
Kristen Roso ◽  
Paula Greer ◽  
...  

Myc plays a central role in tumorigenesis by orchestrating the expression of genes essential to numerous cellular processes1-4. While it is well established that Myc functions by binding to its target genes to regulate their transcription5, the distribution of the transcriptional output across the human genome in Myc-amplified cancer cells, and the susceptibility of such transcriptional outputs to therapeutic interferences remain to be fully elucidated. Here, we analyze the distribution of transcriptional outputs in Myc-amplified medulloblastoma (MB) cells by profiling nascent total RNAs within a temporal context. This profiling reveals that a major portion of transcriptional action in these cells was directed at the genes fundamental to cellular infrastructure, including rRNAs and particularly those in the mitochondrial genome (mtDNA). Notably, even when Myc protein was depleted by as much as 80%, the impact on transcriptional outputs across the genome was limited, with notable reduction mostly only in genes involved in ribosomal biosynthesis, genes residing in mtDNA or encoding mitochondria-localized proteins, and those encoding histones. In contrast to the limited direct impact of Myc depletion, we found that the global transcriptional outputs were highly dependent on the activity of Inosine Monophosphate Dehydrogenases (IMPDHs), rate limiting enzymes for de novo guanine nucleotide synthesis and whose expression in tumor cells was positively correlated with Myc expression. Blockage of IMPDHs attenuated the global transcriptional outputs with a particularly strong inhibitory effect on infrastructure genes, which was accompanied by the abrogation of MB cells proliferation in vitro and in vivo. Together, our findings reveal a real time action of Myc as a transcriptional factor in tumor cells, provide new insight into the pathogenic mechanism underlying Myc-driven tumorigenesis, and support IMPDHs as a therapeutic vulnerability in cancer cells empowered by a high level of Myc oncoprotein.


2020 ◽  
Vol 8 (2) ◽  
pp. e001262
Author(s):  
Claire C Baniel ◽  
Elizabeth G Sumiec ◽  
Jacqueline A Hank ◽  
Amber M Bates ◽  
Amy K Erbe ◽  
...  

BackgroundSome patients with cancer treated with anticancer monoclonal antibodies (mAbs) develop antidrug antibodies (ADAs) that recognize and bind the therapeutic antibody. This response may neutralize the therapeutic mAb, interfere with mAb effector function or cause toxicities. We investigated the potential influence of ADA to modify the tumor-binding capability of a tumor-reactive ‘immunocytokine’ (IC), namely, a fusion protein (hu14.18-IL2) consisting of a humanized, tumor-reactive, anti-GD2 mAb genetically linked to interleukin 2. We characterize the role of treatment delivery of IC (intravenous vs intratumoral) on the impact of ADA on therapeutic outcome following IC treatments in an established antimelanoma (MEL) regimen involving radiotherapy (RT) +IC.MethodsC57BL/6 mice were injected with human IgG or the hu14.18-IL2 IC to develop a mouse anti-human antibody (MAHA) response (MAHA+). In vitro assays were performed to assess ADA binding to IC using sera from MAHA+ and MAHA− mice. In vivo experiments assessed the levels of IC bound to tumor in MAHA+ and MAHA− mice, and the influence of IC route of delivery on its ability to bind to B78 (GD2+) MEL tumors.ResultsMAHA is inducible in C57BL/6 mice. In vitro assays show that MAHA is capable of inhibiting the binding of IC to GD2 antigen on B78 cells, resulting in impaired ADCC mediated by IC. When B78-bearing mice are injected intravenously with IC, less IC binds to B78-MEL tumors in MAHA+ mice than in MAHA− mice. In contrast, when IC is injected intratumorally in tumor-bearing mice, the presence of MAHA does not detectibly impact IC binding to the tumor. Combination therapy with RT+IT-IC showed improved tumor regression compared with RT alone in MAHA+ mice. If given intratumorally, IC could be safely readministered in tumor-bearing MAHA+ mice, while intravenous injections of IC in MAHA+ mice caused severe toxicity. Histamine levels were elevated in MAHA+ mice compared with MAHA− mice after reintroduction of IC.ConclusionsIntratumoral injection may be a means of overcoming ADA neutralization of therapeutic activity of tumor-reactive mAbs or ICs and may reduce systemic toxicity, which could have significant translational relevance.


2016 ◽  
Vol 21 (5) ◽  
pp. 250-252
Author(s):  
N. Yu Anisimova ◽  
M. V Kiselevskiy ◽  
Amir G. Abdullaev ◽  
N. V Malakhova ◽  
S. M Sitdikova ◽  
...  

Introduction. Results of the systemic chemotherapy in the peritoneum canceromatosis are unsatisfactory because of poor penetration of anticancer drugs in serous cavities due to the presence ofperitoneal-plasma barrier. One of the possible ways to enhance the action cytostatic agents is the use of chemotherapy and hyperthermia, which, according to some data, has an own cytotoxic effect. The purpose of the study. The study of the effect ofdifferent modes of hyperthermia on the physiological activity of transplantable lines of tumor and non-transformed cells. Results. Analysis of the impact of hyperthermia on the physiological activity of transplantable lines of tumor and the non-transformed cells in vitro and in vivo studies demonstrated that along with the gain in the level and time of the temperature exposure as the degree of damage as tumor cell mortality rate increases. In this study the most effective treatment was as follows: the temperature is above 45°C with the exposure of more than 2 hours, which is difficult to achieve in practice due to the limited tolerance of healthy tissues. Conclusion. With the use of hyperthermia in monoregimen it is not possible to achieve effective levels of the temperature impact, which could hardly have a significant inhibitory effect on tumor cells.


2014 ◽  
Vol 20 (1) ◽  
pp. 22-35 ◽  
Author(s):  
Eric Chatelain

American trypanosomiasis, or Chagas disease, is the result of infection by the Trypanosoma cruzi parasite. Endemic in Latin America where it is the major cause of death from cardiomyopathy, the impact of the disease is reaching global proportions through migrating populations. New drugs that are safe, efficacious, low cost, and adapted to the field are critically needed. Over the past five years, there has been increased interest in the disease and a surge in activities within various organizations. However, recent clinical trials with azoles, specifically posaconazole and the ravuconazole prodrug E1224, were disappointing, with treatment failure in Chagas patients reaching 70% to 90%, as opposed to 6% to 30% failure for benznidazole-treated patients. The lack of translation from in vitro and in vivo models to the clinic observed for the azoles raises several questions. There is a scientific requirement to review and challenge whether we are indeed using the right tools and decision-making processes to progress compounds forward for the treatment of this disease. New developments in the Chagas field, including new technologies and tools now available, will be discussed, and a redesign of the current screening strategy during the discovery process is proposed.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Hang Ma ◽  
Huifang Li ◽  
Chang Liu ◽  
Navindra P. Seeram

Abstract Objective Cannabidiol (CBD) has been reported to have anti-diabetic effects in pre-clinical and clinical studies but its inhibitory effects on α-glucosidase, a carbohydrate hydrolyzing enzyme, remain unknown. Herein, we evaluated CBD’s inhibitory effects on α-glucosidase using in vitro assays and computational studies. Methods CBD’s inhibitory effect on α-glucosidase activity was evaluated in a yeast enzymatic assay and by molecular docking. The stability of CBD in simulated gastric and intestinal fluids was evaluated by high-performance liquid chromatography analyses. Results CBD, at 10, 19, 38, 76, 152, 304, 608, and 1216 μM, inhibited α-glucosidase activity with inhibition of 17.1, 20.4, 48.1, 56.6, 59.1, 63.7, 74.1, and 95.4%, respectively. Acarbose, the positive control, showed a comparable inhibitory activity (with 85.1% inhibition at 608 μM). CBD’s inhibitory effect on α-glucosidase was supported by molecular docking showing binding energy (-6.39 kcal/mol) and interactions between CBD and the α-glucosidase protein. CBD was stable in simulated gastric and intestinal fluids for two hours (maintained ≥ 90.0%). Conclusions CBD showed moderate inhibitory effect against yeast α-glucosidase activity and was stable in gastric and intestinal fluids. However, further studies on CBD’s anti-α-glucosidase effects using cellular and in vivo models are warranted to support its potential application for the management of type II diabetes mellitus.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 766
Author(s):  
Maurizio Isola ◽  
Cristina Piccinotti ◽  
Massimiliano Magro ◽  
Luca Fasolato ◽  
Fabio Vianello ◽  
...  

The presence of bacteria of various origins on horse hoofs enables the onset of infections following trauma or even post-surgical wounds. Thus, the analysis of new antibacterial substances is of fundamental importance. In this study, the antibacterial efficacy of Iron Animals (IA), a stable colloidal suspension of iron oxide, organic acids, and detergents, was tested in vitro and in vivo. In vitro assays were performed to test the unspecific inhibitory effect of IA on both gram-positive and gram-negative bacteria monitoring the microorganism growth by spectrophotometry (optical density OD600) at 37 °C for 24 h. In vivo test consists on the quantification of the bacterial load in colony forming units per gram (CFU/g) of specimens collected from the frog region of the anterior hooves of 11 horses. Sampling followed the application of four disinfectant protocols consisting of two consecutive 3 min scrubs with 50 mL of 10% Povidone-iodine (PI) or 4% Chlorhexidine (CHx), with or without an additional application for 15 min of 10 mL of Iron Animals (PI+IA and CHx+IA). In vitro, IA completely suppressed the bacterial growth of all the tested microorganisms, resulting in effectiveness also against CHx-resistant bacteria, such as Staphylococcus aureus. In vivo, PI emerged as an ineffective protocol; CHx was effective in 18% of cases, but with the addition of IA (CHx + IA) its use emerged as the best disinfectant protocol for horse hoof, achieving the lowest bacterial load in 55% of cases. The addition of IA, after PI or CHx, improves the effectiveness of both disinfectants leading to the highest bactericidal activity in 82% of cases.


2022 ◽  
Vol 12 ◽  
Author(s):  
Kadi J. Horn ◽  
Alexander C. Jaberi Vivar ◽  
Vera Arenas ◽  
Sameer Andani ◽  
Edward N. Janoff ◽  
...  

The stability and composition of the airway microbiome is an important determinant of respiratory health. Some airway bacteria are considered to be beneficial due to their potential to impede the acquisition and persistence of opportunistic bacterial pathogens such as Streptococcus pneumoniae. Among such organisms, the presence of Corynebacterium species correlates with reduced S. pneumoniae in both adults and children, in whom Corynebacterium abundance is predictive of S. pneumoniae infection risk. Previously, Corynebacterium accolens was shown to express a lipase which cleaves host lipids, resulting in the production of fatty acids that inhibit growth of S. pneumoniae in vitro. However, it was unclear whether this mechanism contributes to Corynebacterium-S. pneumoniae interactions in vivo. To address this question, we developed a mouse model for Corynebacterium colonization in which colonization with either C. accolens or another species, Corynebacterium amycolatum, significantly reduced S. pneumoniae acquisition in the upper airway and infection in the lung. Moreover, the lungs of co-infected mice had reduced pro-inflammatory cytokines and inflammatory myeloid cells, indicating resolution of infection-associated inflammation. The inhibitory effect of C. accolens on S. pneumoniae in vivo was mediated by lipase-dependent and independent effects, indicating that both this and other bacterial factors contribute to Corynebacterium-mediated protection in the airway. We also identified a previously uncharacterized bacterial lipase in C. amycolatum that is required for inhibition of S. pneumoniae growth in vitro. Together, these findings demonstrate the protective potential of airway Corynebacterium species and establish a new model for investigating the impact of commensal microbiota, such as Corynebacterium, on maintaining respiratory health.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i5-i5
Author(s):  
Rui Yang ◽  
Wenzhe Wang ◽  
Meichen Dong ◽  
Kristen Roso ◽  
Xuhui Bao ◽  
...  

Abstract Myc plays a central role in tumorigenesis by orchestrating the expression of genes essential to numerous cellular processes. While it is well established that Myc functions by binding to its target genes to regulate their transcription, the distribution of the transcriptional output across human genome in Myc-amplified cancer cells, and the susceptibility of such transcriptional outputs to therapeutic interferences remain to be fully elucidated. Here, we analyze the distribution of transcriptional outputs in Myc-amplified medulloblastoma (MB) cells by profiling nascent total RNAs within a temporal context. This profiling reveals a major portion of transcriptional action in these cells was directed at the genes fundamental to cellular infrastructures, including rRNAs and particularly those in the mitochondrial genome (mtDNA). Notably, even when Myc protein was depleted by as much as 80%, the impact on transcriptional outputs across the genome was limited, with notable reduction mostly in genes of involved in ribosomal biosynthesis, genes residing in mtDNA or encoding mitochondria-localized proteins, and those encoding histones. In contrast to the limited direct impact of Myc depletion, we found that the global transcriptional outputs were highly dependent on the activity of Inosine Monophosphate Dehydrogenases (IMPDHs), rate limiting enzymes for de novo guanine nucleotide synthesis and whose expression in tumor cells was positively correlated with Myc’s expression. Blockage of IMPDHs attenuated the global transcriptional outputs with a particularly strong inhibitory effect on the aforementioned infrastructure genes, which was accompanied by the abrogation of MB cell’s proliferation in vitro and in vivo. Together, our findings reveal a real time action of Myc as a transcriptional factor in tumor cells, gain new insight into the pathogenic mechanism underlying Myc-driven tumorigenesis, and support IMPDHs as a therapeutic vulnerability in MB cells empowered by a high level of Myc oncoprotein.


Sign in / Sign up

Export Citation Format

Share Document