scholarly journals Effects of Contact Load and Torsion Angle on Crack Propagation Behaviors of Inclined Crossed Steel Wires during Tension–Torsion Fretting Fatigue in Acid Solution

2021 ◽  
Vol 11 (22) ◽  
pp. 10529
Author(s):  
Dagang Wang ◽  
Daozhu Song ◽  
Magd Abdel Wahab

The hoisting rope in the kilometer-deep coal mine exhibits the tension–torsion fretting fatigue behaviors of inclined crossed steel wires in acid solution. Distinct contact load and torsion angles of steel wires in the rope cause different crack propagation behaviors, which greatly affect the fatigue lives of steel wires. Therefore, the effects of contact load and torsion angle on the crack propagation behaviors of inclined crossed steel wires during tension–torsion fretting fatigue in acid solution were investigated in the present study. The three-dimensional X-ray tomographic micro-imaging system was used to reveal evolutions of crack profiles and crack propagation depths during the test. The evolution of friction coefficient between steel wires during the test is presented. The three-dimensional white light interference microscope, electrochemical analyzer, and scanning electron microscope were employed to investigate the wear depth profiles, Tafel polarization curves and impedance spectra, and wear scar morphologies, respectively, of steel wires. Effects of contact load and torsion angle on crack propagation behaviors of inclined crossed steel wires during the tests were explored through analyses of friction and wear mechanisms and electrochemical corrosion damage. The results show that as the contact load and torsion angle increase, the crack propagation depth and rate of steel wire both increase and the fatigue life of steel wire decreases. Those are mainly attributed to the increases in the average tangential force between steel wires, wear depth, electrochemical corrosion tendency, and surface damage of steel wire as well as the decrease in corrosion resistance.

2011 ◽  
Vol 99-100 ◽  
pp. 1014-1017 ◽  
Author(s):  
Hong Tao Liu ◽  
De Kun Zhang ◽  
Shou Fan Cao ◽  
Yan Shen ◽  
Xing Hui Hou ◽  
...  

In this paper, the fretting corrosion wear behaviors of steel wires were researched when the wires were lubricated with alkaline solution. Then, the wear mechanism was analyzed. Results showed that the friction coefficients of wires lubricated with alkaline solution were little influenced by the loads, while greatly affected by the electrochemical corrosion existing on the surfaces of the friction pairs. The shape of most of the fretting wear debris was tuberous or near spherical which owns smooth edges. This kind of wear debris was beneficial to reduce the fretting wear of steel wires. The depth of wear scar, used to evaluate the fretting corrosion wear of the steel wires, was increased with the increase of load. In addition, the wear depth of the wire lubricated with alkaline solution was not only less than which obtained in dry friction condition, but also less than which lubricated with deionized water and acid solution. Analysis showed that the corrosion solution played an important part in the fretting corrosion wear. And the effect of corrosion solution to the wear was stronger than which to the corrosion of steel wire materials.


2020 ◽  
Vol 1010 ◽  
pp. 71-78
Author(s):  
Maslinda Kamarudin ◽  
Zaini Ahmad ◽  
Mohd Nasir Tamin

This paper presents the residual properties and parameters of the damage-based fatigue life prediction models of the steel wire ropes under fretting fatigue conditions. The damage mechanics-based approach is employed to develop the predictive method for the reliability of the steel wire ropes. The elastic modulus is dependent on the fatigue load condition and the accumulated number of the load cycles. The characteristic degradation of the Young’s modulus of drawn steel wires is established through the phenomenological presentation of the interrupted fatigue test data. The samples are given a quasi-static loading followed by a block cyclic loading with various stress amplitudes and ratios. The residual Young’s modulus is calculated after each block of cycles. The effect of the different loading condition with the amplitude and mean stress on the measured fatigue life of a single wire is presented using the life parameter, χ. The residual Young’s modulus data are presented in terms of normalized quantities. Significant reduction in the elastic modulus due to fatigue is exhibited after enduring 70% of the fatigue life of the material. The fitting constants are obtained, and the fitted equation is used to describe the degradation of Young’s modulus at N number of cycles. Subsequently, the data can be applied to predict the fatigue-life of steel wire ropes and assess its reliability through fretting-induced damage models.


2016 ◽  
Vol 101 ◽  
pp. 348-355 ◽  
Author(s):  
Dagang Wang ◽  
Xiaowu Li ◽  
Xiangru Wang ◽  
Dekun Zhang ◽  
Dao’ai Wang

2020 ◽  
Vol 10 (18) ◽  
pp. 6610
Author(s):  
Dagang Wang ◽  
Xiangru Wang ◽  
Guozheng Xie ◽  
Huilong Zhu

The wear rate and dissipation energy during tension–torsion cyclic loading of steel wires with fretting contact in different environmental media were explored in this study. Hysteresis loops of tangential force versus displacement amplitude (Ft-D) and torque versus torsion angle (T-θ), and their dissipation energies were obtained employing the self-made test rig. Morphologies of wear scars of steel wires were observed employing the white light interference surface morphology. The quantitative demonstration of the coefficient of cyclic wear of steel wire was carried out combining polynomial fitting, reconstruction of three-dimensional geometric model of wear scar and Archard’s equation. The results show that Ft-D curves reveal both decreases of the relative slip and dissipation energy in the order: corrosive media, deionized water and air. Increases of contact load and crossing angle caused overall decreases in the relative slip and dissipation energy, while the relative slip and dissipation energy both increased with increasing torsion angle. T-θ curves indicated the largest and smallest dissipation energies in cases of acid solution and deionized water, respectively. Increases of contact load, crossing angle and torsion angle caused increases in relative slip and dissipation energy due to cyclic torsional loading with fretting contact. The wear coefficient in cases of distinct environmental media decreased in this order: air, corrosive media and deionized water. Increases of the contact load, torsion angle and crossing angle all induced increases in the wear coefficient.


2018 ◽  
Vol 106 ◽  
pp. 159-164 ◽  
Author(s):  
Xiangru Wang ◽  
Dagang Wang ◽  
Dekun Zhang ◽  
Shirong Ge ◽  
José Alexander Araújo

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rou Li ◽  
Changqing Miao ◽  
Tinghua Wei

Purpose This paper aims to investigate the electrochemical corrosion rate of galvanized steel wires for bridge cables. Design/methodology/approach The electrochemical corrosion test and response surface analysis of galvanized steel wires were carried out, and the variety of polarization curves of galvanized steel wires under different corrosion parameters was discussed. The expression of corrosion rate of galvanized steel wires under the action of single and multi-factor coupling was established. Findings The polarization curves of galvanized steel wires under different Cl- concentrations, pH value and temperature were basically similar, but all show different degrees of deviation and some anodic polarization curves had inflection points. For example, when the Cl- concentration reached 3.5%, the corrosion rate of galvanized steel wire was four times that of pure water. Originality/value The influence relationship of single and multi-factor coupling on the corrosion rate of galvanized steel wires was as follows: RCl > RT * Cl > RT > RpH > RpH * T > RpH * Cl.


Author(s):  
Yimin Xie ◽  
Jinbo Ning

Abstract Background/Purpose The Nuss procedure is the most common surgical repair for pectus excavatum (PE). Surgical steel wires are used in some modifications of the Nuss procedure to attach one or both ends of a support bar to the ribs. During follow-up, wire breakage was found in some cases. Patients with wire breakage may undergo prolonged bar removal surgery and may be exposed to excessive radiation.In this study, we had a series of patients who received polydioxanone suture (PDS) fixations instead of steel wires. This retrospective study was conducted to explore the differences between these two fixation materials in the incidence of related complications and efficacies. Furthermore, we attempted to observe whether the two materials lead to similar surgical efficacy in the Nuss procedure, whether they have divergent effects on the bar removal surgery, and whether PDS can reduce the risks due to steel wire breakage as expected. Methods We retrospectively studied PDS and surgical steel wires as fixation materials for the Nuss procedure in children with congenital PE and reviewed the outcomes and complications. A total of 75 children who had undergone Nuss procedure repairs and bar removals from January 2013 to December 2019 were recruited to participate in this study. They were divided into three groups: the PDS group, the unbroken wire (UBW) group, and the broken wire (BW) group, according to the fixation materials and whether the wires had broken or not. Moreover, we selected the duration of operation (DO), intraoperative blood loss (BL), bar displacement (BD), postoperative pain score (PPS), and incision infection as the risk indicators and the postrepair Haller index (HI) as the effectiveness indicator. These indicators were statistically compared to determine whether there were differences among the three groups. Results One BD occurred in the PDS and BW groups while none took place in the UBW group. No incision infection was found in any of the groups. The PDS group had the shortest DO, while the DO in the UBW group was shorter than that in the BW group (p < 0.05). BL in the PDS group was less than that in the other two groups (p < 0.05). Additionally, no difference was observed in BL between the BW and UBW groups (p > 0.05). The PPS of the PDS group was less than that of the BW group (p < 0.05), whereas no differences were found between the other two groups. No statistical difference emerged in HI among the groups (p > 0.05). Conclusion PDS fixation results in a similar repair outcome and shows certain advantages in the DO, BL, and PPS; also, PDSs are safe and effective in the Nuss procedure. Level of evidence Level III.


2000 ◽  
Vol 123 (4) ◽  
pp. 686-698 ◽  
Author(s):  
K. Iyer ◽  
C. A. Rubin ◽  
G. T. Hahn

Primary fretting fatigue variables such as contact pressure, slip amplitude and bulk cyclic stresses, at and near the contact interface between the rivet shank and panel hole in a single rivet-row, 7075-T6 aluminum alloy lap joint are presented. Three-dimensional finite element analysis is applied to evaluate these and the effects of interference and clamping stresses on the values of the primary variables and other overall measures of fretting damage. Two rivet geometries, non-countersunk and countersunk, are considered. Comparison with previous evaluations of the fretting conditions in similar but two-dimensional connections indicates that out-of-plane movements and attending effects can have a significant impact on the fatigue life of riveted connections. Variations of the cyclic stress range and other proponents of crack initiation are found to peak at distinct locations along the hole-shank interface, making it possible to predict crack initiation locations and design for extended life.


Sign in / Sign up

Export Citation Format

Share Document