scholarly journals Parameter Sensitivity Analysis on Dynamic Coefficients of Partial Arc Annular-Thrust Aerostatic Porous Journal Bearings

2021 ◽  
Vol 11 (22) ◽  
pp. 10791
Author(s):  
Pyung Hwang ◽  
Polina Khan ◽  
Seok-Won Kang

Aerostatic bearings are widely used in high-precision devices. Partial arc annular-thrust aerostatic porous journal bearings are a prominent type of aerostatic bearings, which carry both radial and axial loads and provide high load-carrying capacity, low air consumption, and relatively low cost. Spindle shaft tilting is a resource-demanding challenge in numerical modeling because it involves a 3D air flow. In this study, the air flow problem was solved using a COMSOL software, and the dynamic coefficients for tilting degrees of freedom were obtained using finite differences. The obtained results exhibit significant coupling between the tilting motion in the x-and y-directions: cross-coupled coefficients can achieve 20% of the direct coefficient for stiffness and 50% for damping. In addition, a nonlinear behavior can be expected, because the tilting motion within 3°, tilting velocities within 0.0012°/s, and relative eccentricity of 0.2 have effects as large as 20% for direct stiffness and 100% for cross-coupled stiffness and damping. All dynamic coefficients were fitted with a polynomial of eccentricity, tilting, and tilting velocities in two directions, with a total of six parameters. The resulting fitting coefficient tables can be employed for the fast dynamic simulation of the rotor shaft carried on the proposed bearing type.

2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Guangwei Yang ◽  
Jianjun Du ◽  
Weiping Ge ◽  
Tun Liu ◽  
Xiaowei Yang

The traditional eight-coefficient bearing model only considers the translational motion of the bearings and neglects the tilting motion and coupling effects between them. In this paper, the dynamic characteristics of the spiral-grooved opposed-hemisphere gas bearing considering five degrees-of-freedom are studied, and 50 dynamic coefficients including the translational, tilting, and coupling components are completely calculated. The Reynolds equations and their perturbed equations are solved by the finite element method to obtain the dynamic stiffness and damping coefficients. The effects of the tilting motion on the dynamic coefficients and response are analyzed, respectively. The results show that the coupling coefficients between the translational and tilting motions, which have been neglected in most previous studies, are significant at large eccentricity ratio. But these coupling coefficients have little effect on the dynamic response. On the other hand, the influences of the tilting motion on the synchronous response and natural frequency are remarkable and will decrease the stability of the rotor bearing system.


2019 ◽  
pp. 256-260
Author(s):  
L F Hillesheim ◽  
V N S Ventura ◽  
Daniel A S Ponce

Physiotherapy is a science which acts in the area of biomechanical and functional disorder, establishing diagnostics and supporting the locomotor system rehabilitation. These procedures require assistance of a physiotherapist, however they are insufficient for the country´s demand. Usually such procedures use devices with the newest technology, in order to enable recovery and avoid possible permanent trauma. In order to face this reality, we have committed to develop an air muscle, based on the McKibben´s model, with the purpose of proposing a new low-cost parallel robot to physiotherapy (Soft Robot) for the rehabilitation of patients with ankle injuries. This robot is responsible for moving three degrees of freedom platform, therefore acting directly in the rehabilitation of the patient through the execution of soft and accurate therapeutic movements that stimulate the recovery of operated tissues. First, it is build an air muscle that will be used as actuator in parallel platform. Then is raised a curve of behavior to shift versus pressure on proposed muscle. In conjunction with these data to actuator behavior is modelled and simulated the new parallel robot. This air muscle was build using a latex tube covered by a braided fibred mesh and fuelled by a pneumatic tire valve, therefore obtaining a nonlinear behavior of contraction to each pressure value admitted on muscle. By means of this prototype building purpose, we obtained satisfactory results, such as a contraction of 25% of the nominal length for pressures up to six bars. Considering such a result and the low cost involved building actuator as this one, the advantage in using this model is perceptible.


2015 ◽  
Vol 6 (5) ◽  
pp. 649-664
Author(s):  
Michael G. Papanikolaou ◽  
Michael G. Farmakopoulos ◽  
Chris A. Papadopoulos

Purpose – Wear in journal bearings occurs when the operating conditions (high load, high temperature, low angular velocity or low viscosity), downgrade the ability of the bearing to carry load. The wear depth increases because the rotor comes in contact with the bearing surface. Wear in journal bearings affects their characteristics because of its influence on the thickness of the fluid film. This influence can be detected in the dynamic behavior of the rotor and especially in the dynamic stiffness and damping coefficients. The paper aims to discuss these issues. Design/methodology/approach – In this paper, the effect of wear on the rotor dynamic stiffness and damping coefficients (K and C) of a short journal bearing is investigated. K and C in this work are estimated by using two methods a semi-analytical method and finite element (FE) analysis implemented in the ANSYS software. Findings – The main goal of this research is to make the identification of wear in journal bearings feasible by observing the alternation of their dynamic coefficients. Both of the methods implemented are proven to be useful, while FE analysis can provide more accurate results. Originality/value – This paper is original and has not been published elsewhere.


1985 ◽  
Vol 107 (2) ◽  
pp. 256-261 ◽  
Author(s):  
D. F. Wilcock ◽  
O. Pinkus

Many high-speed or large fluid film bearings operate in the turbulent regime. However, relatively little consideration has been given to the effects of turbulence and of the variation in viscosity on the dynamic stiffness and damping characteristics of the bearings. Since the dynamic behavior of the rotor supported on such bearings is often closely tied to the bearing dynamic coefficients, knowledge of them may be critical to both the design and the in-place correction of rotor instabilities. These effects are here considered in some detail on the basis of computer calculated analytical results, both in general dimensionless terms and with regard to a specific numerical example.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Changmin Chen ◽  
Jianping Jing ◽  
Jiqing Cong ◽  
Zezeng Dai ◽  
Jianhua Cheng

Abstract The position of fluid film in journal bearing will change while the journal moving in bearing, which can be named fluid film boundary migration (FFBM). It is usually ignored in the calculation of linear dynamic coefficients. While, the errors brought by this neglection was not ever investigated in detail. In this paper, the influence of FFBM on bearing dynamic coefficients and rotor system dynamic behaviors are investigated. A new perturbation-based model is proposed to take the FFBM into account by modifying the boundary conditions of governing equations. It is then verified by the experimental results and analytical results from previous research. Furthermore, the effects of FFBM on stiffness and damping in two typical journal bearings are investigated. The result indicates that the FFBM has a significant influence on dynamic coefficients of full circular journal bearing but little impact on journal bearing with axial grooves. Moreover, it affects the stiffness and damping more significantly in the cases of large length-to-diameter ratios or small eccentricity ratios in full circle bearing. Finally, the dynamical behavior of a rotor-bearing system with considering the FFBM is also investigated. The result shows that the FFBM of oil film has remarkable influences on the instability threshold and imbalance responses of the rotor system, which should not be ignored. The conclusions obtained in this research are expected to be helpful for the design of full circular journal bearings or rotor-bearing systems.


1983 ◽  
Vol 105 (2) ◽  
pp. 297-302 ◽  
Author(s):  
I. Green ◽  
I. Etsion

The stiffness and damping coefficients of the fluid film in mechanical face seals are calculated for the three major degrees of freedom of the primary seal ring. The calculation is based on small perturbation of the ring from its equilibrium position. Analytical expressions are presented for the various coefficients and a comparison is made with results of accurate but more complex analyses to establish the range of applicability.


1985 ◽  
Vol 107 (4) ◽  
pp. 410-415 ◽  
Author(s):  
E. Anton ◽  
H. Ulbrich

Rotor-bearing systems with long, fast running rotors and rotational symmetry disturbed in stiffness, damping and moments of inertia are investigated. Since a magnetic bearing is used as an actuator in a control circuit, vibrations of the system can be influenced in a desired way, A feedback control is designed with emphasis to the endangered modes of oscillation of the rotor system caused by parametrical excitation. A small number of sensors and a controller with constant gain factors are used in order to obtain a low-cost system. For illustration an elastically supported gas centrifuge with 12 degrees of freedom and asymmetrical stiffness and damping properties is considered.


1988 ◽  
Vol 110 (3) ◽  
pp. 387-393 ◽  
Author(s):  
T. Kato ◽  
Y. Hori

This paper presents a fast method for calculating the dynamic coefficients of the finite width journal bearings under quasi Reynolds boundary condition in which the trailing boundary line is given by a straight line and the continuity of bulk flow across this line is ensured. Calculated linear stiffness and damping coefficients agree well with the data of Lund and Thomsen [1]. The time required by this calculation with HITAC M682H is only 0.1–0.3 seconds (about 1/100 of the time required by the ordinary FDM), which suggests the possibility of real time journal bearing designs without using the database of the dynamic coefficients.


Author(s):  
Xun Ma ◽  
Wubin Xu ◽  
Xueping Zhang ◽  
Siyi Ding

The dynamic characteristics of the journal with form error are analyzed, including normalized stiffness and damping coefficients. A new expression for journal surface with form error is presented, which is capable of formulating any types of form errors on the journal, and the dimensionless Reynolds equation is renewed and solved suffering from the Jakobsson, Floberg, and Olsson boundary conditions. The results show that form errors do have a significant influence on the dynamic performance of journal bearings and that the uncertainty attribute of form error could result in variations of dynamic properties so significantly that the system might operate in an entirely different way. Therefore, it is necessary to take more operating information into account, such as the elaborate state of the journal surface, in order to predict the bearing performance more accurately.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2459
Author(s):  
Rubén Tena Sánchez ◽  
Fernando Rodríguez Varela ◽  
Lars J. Foged ◽  
Manuel Sierra Castañer

Phase reconstruction is in general a non-trivial problem when it comes to devices where the reference is not accessible. A non-convex iterative optimization algorithm is proposed in this paper in order to reconstruct the phase in reference-less spherical multiprobe measurement systems based on a rotating arch of probes. The algorithm is based on the reconstruction of the phases of self-transmitting devices in multiprobe systems by taking advantage of the on-axis top probe of the arch. One of the limitations of the top probe solution is that when rotating the measurement system arch, the relative phase between probes is lost. This paper proposes a solution to this problem by developing an optimization iterative algorithm that uses partial knowledge of relative phase between probes. The iterative algorithm is based on linear combinations of signals when the relative phase is known. Phase substitution and modal filtering are implemented in order to avoid local minima and make the algorithm converge. Several noise-free examples are presented and the results of the iterative algorithm analyzed. The number of linear combinations used is far below the square of the degrees of freedom of the non-linear problem, which is compensated by a proper initial guess. With respect to noisy measurements, the top probe method will introduce uncertainties for different azimuth and elevation positions of the arch. This is modelled by considering the real noise model of a low-cost receiver and the results demonstrate the good accuracy of the method. Numerical results on antenna measurements are also presented. Due to the numerical complexity of the algorithm, it is limited to electrically small- or medium-size problems.


Sign in / Sign up

Export Citation Format

Share Document