scholarly journals Preliminary Propulsion and Power System Design of a Tandem-Wing Long-Range eVTOL Aircraft

2021 ◽  
Vol 11 (23) ◽  
pp. 11083
Author(s):  
Javier Alba-Maestre ◽  
Koen Prud’homme van Reine ◽  
Tomas Sinnige ◽  
Saullo G. P. Castro

Novel eVTOL aircraft configurations are picking up momentum in the emerging market of urban air mobility (UAM). These configurations feature electrical power systems and distributed propulsion architectures, both uncommon in current aircraft. As such, the design of eVTOL aircraft lies outside the bounds of current established frameworks and poses many challenges in the field of preliminary aircraft design. This paper presents a preliminary design methodology for open rotor eVTOL configurations with batteries as the power source. First, the propeller external dimensions are calculated, and then an optimised blade geometry for cruise condition is computed. Thereupon, the batteries and electric motors are sized. The design framework is then applied to an eVTOL aircraft with a design range of 400 km and a capacity of five occupants (four passengers and one pilot), focusing on the central-European market and aimed to be released in 2030. The final configuration is a battery-powered tandem-wing aircraft with 12 variable-pitch, variable-speed open rotors placed on the leading edges of the wings. These rotors rotate outboard-down and feature six blades. The power source comprises 24 solid-state lithium batteries with a nominal voltage of 500 V and an assumed energy density of 500 Wh/kg. The proposed design methodology offers the possibility of computing the necessary propeller geometry for numerical simulations in the early stages of the design, and of easily obtaining accurate estimates for the mass of the power system which can improve the overall mass estimates for the analysed configuration.

Author(s):  
B. Venkateswara Rao ◽  
Ramesh Devarapalli ◽  
H. Malik ◽  
Sravana Kumar Bali ◽  
Fausto Pedro García Márquez ◽  
...  

The trend of increasing demand creates a gap between generation and load in the field of electrical power systems. This is one of the significant problems for the science, where it require to add new generating units or use of novel automation technology for the better utilization of the existing generating units. The automation technology highly recommends the use of speedy and effective algorithms in optimal parameter adjustment for the system components. So newly developed nature inspired Bat Algorithm (BA) applied to discover the control parameters. In this scenario, this paper considers the minimization of real power generation cost with emission as an objective. Further, to improve the power system performance and reduction in the emission, two of the thermal plants were replaced with wind power plants. In addition, to boost the voltage profile, Static VAR Compensator (SVC) has been integrated. The proposed case study, i.e., considering wind plant and SVC with BA, is applied on the IEEE30 bus system. Due to the incorporation of wind plants into the system, the emission output is reduced, and with the application of SVC voltage profile improved.


2018 ◽  
Vol 9 (1) ◽  
pp. 679-686
Author(s):  
Eko Setiawan ◽  
Septin Puji Astuti ◽  
Handoko Handoko

Many of disasters are related to electrical power systems. They affect human life and economy. In order to reduce the negative impacts caused by the failure of electricity power system due to disasters and to create a robust electrical power system, selecting the best relay of electricity power is a must. This study identified the best protective relay of electrical power systems of PLN in Surakarta region by applying analytic hierarchy process (AHP), one of MCDM approaches, combined with fuzzy logic. Extent analysis approach was implemented to derive priorities of various criteria, sub-criteria and alternatives. Three relays being considered in the selection process are electromagnetic relay, digital relay and static relay. Four criteria in this study are techno-economy, fault frequency, protection of transmission line and advantage of relay over others. Meanwhile, five sub-criteria for each criterion are reliability, selectivity, sensitivity, working speed and efficient. Based on the criteria and sub-criteria, it can be inferred that in terms of four working areas of PLN management in Surakarta region, digital relay is seen as the best choice of relays.


Author(s):  
Fredy Estuardo Tamayo Guzmán ◽  
Carlos Andrés Barrera-Singaña

Electrical power systems are exposed to several events that can cause unstable operation scenarios. This is due to improper operation of certain components. If an event occurs, the system must be designed to overcome that contingency, thus remaining in a permanent condition that must be evaluated in order to monitor and prevent a possible collapse of the system. An evaluation of steady state stability is proposed at this work based on the capacity curves of generators, transformers and transmission lines. These remarked curves provide information on the operation point of these elements, thus allowing the application of remedial actions. PowerFactory and Matlab are used to carry out the tool for monitoring the operation points after a contingency. The effectiveness of the developed tool is validated at the IEEE 39-bus power system model, where results shows that the functionalaty for different contingencies based on the operating conditions when the components of the power system are varied, cosnquently, the tool identifies cases that require actions at the operational level.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4826
Author(s):  
Steffen Meinecke ◽  
Leon Thurner ◽  
Martin Braun

Publicly available grid datasets with electric steady-state equivalent circuit models are crucial for the development and comparison of a variety of power system simulation tools and algorithms. Such algorithms are essential to analyze and improve the integration of distributed energy resources (DERs) in electrical power systems. Increased penetration of DERs, new technologies, and changing regulatory frameworks require the continuous development of the grid infrastructure. As a result, the number and versatility of grid datasets, which are required in power system research, increases. Furthermore, the used grids are created by different methods and intentions. This paper gives orientation within these developments: First, a concise overview of well-known, publicly available grid datasets is provided. Second, background information on the compilation of the grid datasets, including different methods, intentions and data origins, is reviewed and characterized. Third, common terms to describe electric steady-state distribution grids, such as representative grid or benchmark grid, are assembled and reviewed. Recommendations for the use of these grid terms are made.


Author(s):  
Amarjeet Singh

Problems associated with harmonic distortion are well understood for electrical power system applications.The right solution is challenging. There are numerous technologies to choose from, each with specific technical and economic advantages. This paper provides recommendations for reducing harmonic distortion, improving system capacity and improving system reliability. Special considerations for applying capacitors on a power systems with harmonics will be discussed.


Author(s):  
Pratap Chandra Pradhan ◽  
Rabindra Kumar Sahu ◽  
Sidhartha Panda

AbstractIn the current situation, operation and control of power system is a greater challenge. The most significant situation in power system control is load frequency control. In the present work, a hybrid differential evolution and pattern search (hDE-PS) method has been suggested for frequency regulation of electrical power systems. Fractional-order proportional integral derivative (FOPID) controller is implemented for design and analysis purpose. The suggested control method has been applied for two electrical power systems model, i.e., 2-area diverse source power system with/without HVDC linkage and 2-area thermal system. The performances of the suggested controller have been evaluated with PID and optimal controller. The simulation results indicate that system performances are enhanced with the suggested approach for identical structure. Robustness of the suggested approach has been analyzed by variation in random load and the system parameters. The suggested method (hDE-PS tuned FOPID) is further investigated with a 2-area thermal system. The performance of the recommended approach is analyzed by equating the results with other newly available approaches, like Genetic Algorithm (GA), Bacteria Foraging Optimization Algorithm (BFOA), Particle Swarm Optimization (PSO), hybrid BFOA and PSO (hBFOA-PSO), multi-objective Non-dominated Sorting Genetic Algorithm (NSGA)-II and Firefly Algorithm for the similar structure.


Author(s):  
Alexander Duchac ◽  
Magnus Knutsson

An open phase condition is a known phenomenon in the power industry and is now recognized to have adverse impact on the electrical power systems in several nuclear power plants. An open phase condition may result in challenging plant safety. Operating experience in different countries has shown that the currently installed instrumentation and protective schemes have not been adequate to detect this condition and take appropriate action. An open phase condition, if not detected and disconnected in a timely manner, represents design vulnerability for many nuclear power plants. It may lead to a condition where neither the offsite power system nor the onsite power system is able to support the safety functions, and could propagate to station blackout. The design of electrical power systems needs to be evaluated systematically and improved, where necessary, to minimize the probability of losing electric power from any of the remaining supplies as a result of single or double open phase conditions. The improved design should be coordinated with existing measures to ensure that the electrical power system is able to support the safety functions after the open phase condition is detected and disconnected. In this regard, the IAEA has developed a safety publication dealing with design vulnerability of open phase conditions. This paper summarizes the contents of the report, the rationale and criteria to enhance the safety of nuclear power plants by providing technical guidance to address an open phase condition vulnerability in electrical systems used to start up, operate, maintain and shutdown the nuclear power plant.


Author(s):  
Zakaria Al-Omari ◽  
A. Hamzeh ◽  
Sadeq A. Hamed ◽  
A. Sandouk ◽  
G. Aldahim

One of the key functions of the Distribution System Operators (DSOs) of<br />electrical power systems (EPS) is to minimize the transmission and<br />distribution power losses and consequently the operational cost. This<br />objective can be reached by operating the system in an optimal mode which is performed by adjusting control parameters such as on-load tap changer (OLTC) settings of transformers, generator excitation levels, and VAR compensators switching. The deviation from operation optimality will result in additional losses and additional operational cost of the power system. Reduction of the operational cost increases the power system efficiency and provides a significant reduction in total energy consumption. This paper proposes a mathematical model for minimizing the additional (add-on) costs based on Design of Experiments (DOE). The relation between add-on operational costs and OLTC settings is established by means of regression statistical analysis. The developed model is applied to a 20-bustest network. The regression curve fitting procedure requires simulation experiments which have been carried out by the DigSilent PowerFactory 13.2 Program for performing network power flow. The results show the effectiveness of the model. The research work raises the importance the power system operation management of the EPS where the Distribution System Operator can avoid the add-on operational costs by continuous correction to get an operation mode close to optimality.


Enfoque UTE ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 96-107 ◽  
Author(s):  
Diego Carrión ◽  
Alex Ayo ◽  
Jorge Wilson González

Stability analysis in electrical power systems is based on the study in dynamic state of the voltage and frequency, since at the moment that there is some contingency it fluctuates drastically due to the primary and secondary controls of the voltage and frequency to the power systems that act on the generators. In order to solve the possible stability problems that may arise in power systems, various techniques have been developed that act on the generating machines for their protection as well as on the loads for the power cut. The present investigation proposes an alternative methodology for load disconnection by low frequency as an option to save the power system from a possible blackout due to instability due to a fall in the frequency, managing to improve the results affected by other improved techniques, the frequency change range, frequency deviation and the effects of demand disconnection. The proposed methodology was tested in the IEEE 14 bus system.


Sign in / Sign up

Export Citation Format

Share Document